Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 68(1): 171-184.e6, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28985503

RESUMO

A substantial fraction of eukaryotic transcripts are considered long non-coding RNAs (lncRNAs), which regulate various hallmarks of cancer. Here, we discovered that the lncRNA HOXB-AS3 encodes a conserved 53-aa peptide. The HOXB-AS3 peptide, not lncRNA, suppresses colon cancer (CRC) growth. Mechanistically, the HOXB-AS3 peptide competitively binds to the ariginine residues in RGG motif of hnRNP A1 and antagonizes the hnRNP A1-mediated regulation of pyruvate kinase M (PKM) splicing by blocking the binding of the ariginine residues in RGG motif of hnRNP A1 to the sequences flanking PKM exon 9, ensuring the formation of lower PKM2 and suppressing glucose metabolism reprogramming. CRC patients with low levels of HOXB-AS3 peptide have poorer prognoses. Our study indicates that the loss of HOXB-AS3 peptide is a critical oncogenic event in CRC metabolic reprogramming. Our findings uncover a complex regulatory mechanism of cancer metabolism reprogramming orchestrated by a peptide encoded by an lncRNA.


Assuntos
Transformação Celular Neoplásica/genética , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Peptídeos/genética , RNA Longo não Codificante/genética , Processamento Alternativo , Motivos de Aminoácidos , Animais , Ligação Competitiva , Linhagem Celular Tumoral , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Éxons , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Peptídeos/antagonistas & inibidores , Peptídeos/metabolismo , Ligação Proteica , Mapeamento de Interação de Proteínas , Piruvato Quinase/genética , Piruvato Quinase/metabolismo , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais
2.
J Cell Mol Med ; 28(17): e70035, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39245790

RESUMO

Diabetes-related bone loss represents a significant complication that persistently jeopardizes the bone health of individuals with diabetes. Primary cilia proteins have been reported to play a vital role in regulating osteoblast differentiation in diabetes-related bone loss. However, the specific contribution of KIAA0753, a primary cilia protein, in bone loss induced by diabetes remains unclear. In this investigation, we elucidated the pivotal role of KIAA0753 as a promoter of osteoblast differentiation in diabetes. RNA sequencing demonstrated a marked downregulation of KIAA0753 expression in pro-bone MC3T3 cells exposed to a high glucose environment. Diabetes mouse models further validated the downregulation of KIAA0753 protein in the femur. Diabetes was observed to inhibit osteoblast differentiation in vitro, evidenced by downregulating the protein expression of OCN, OPN and ALP, decreasing primary cilia biosynthesis, and suppressing the Hedgehog signalling pathway. Knocking down KIAA0753 using shRNA methods was found to shorten primary cilia. Conversely, overexpression KIAA0753 rescued these changes. Additional insights indicated that KIAA0753 effectively restored osteoblast differentiation by directly interacting with SHH, OCN and Gli2, thereby activating the Hedgehog signalling pathway and mitigating the ubiquitination of Gli2 in diabetes. In summary, we report a negative regulatory relationship between KIAA0753 and diabetes-related bone loss. The clarification of KIAA0753's role offers valuable insights into the intricate mechanisms underlying diabetic bone complications.


Assuntos
Diferenciação Celular , Proteínas Associadas aos Microtúbulos , Osteoblastos , Transdução de Sinais , Animais , Humanos , Masculino , Camundongos , Linhagem Celular , Cílios/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Experimental/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/genética , Proteínas Associadas aos Microtúbulos/metabolismo
3.
J Am Chem Soc ; 146(10): 6697-6705, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38419157

RESUMO

Synthesizing large metal-organic framework (MOF) single crystals has garnered significant research interest, although it is hindered by the fast nucleation kinetics that gives rise to numerous small nuclei. Given the different chemical origins inherent in various types of MOFs, the development of a general approach to enhancing their crystal sizes presents a formidable challenge. Here, we propose a simple isotopic substitution strategy to promote size growth in MOFs by inhibiting nucleation, resulting in a substantial increase in the crystal volume ranging from 1.7- to 165-fold. Impressively, the crystals prepared under optimized conditions by normal approaches can be further enlarged by the isotope effect, yielding the largest MOF single crystal (2.9 cm × 0.48 cm × 0.23 cm) among the one-pot synthesis method. Detailed in situ characterizations reveal that the isotope effect can retard crystallization kinetics, establish a higher nucleation energy barrier, and consequently generate fewer nuclei that eventually grow larger. Compared with the smaller crystals, the isotope effect-enlarged crystal shows 33% improvement in the X-ray dose rate detection limit. This work enriches the understanding of the isotope effect on regulating the crystallization process and provides inspiration for exploring potential applications of large MOF single crystals.

4.
Environ Sci Technol ; 58(26): 11781-11790, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38877971

RESUMO

Synergistic control of nitrogen oxides (NOx) and nitrogen-containing volatile organic compounds (NVOCs) from industrial furnaces is necessary. Generally, the elimination of n-butylamine (n-B), a typical pollutant of NVOCs, requires a catalyst with sufficient redox ability. This process induces the production of nitrogen-containing byproducts (NO, NO2, N2O), leading to lower N2 selectivity of NH3 selective catalytic reduction of NOx (NH3-SCR). Here, synergistic catalytic removal of NOx and n-B via spatially separated cooperative sites was originally demonstrated. Specifically, titania nanotubes supported CuOx-CeO2 (CuCe-TiO2 NTs) catalysts with spatially separated cooperative sites were creatively developed, which showed a broader active temperature window from 180 to 340 °C, with over 90% NOx conversion, 85% n-B conversion, and 90% N2 selectivity. A synergistic effect of the Cu and Ce sites was found. The catalytic oxidation of n-B mainly occurred at the Cu sites inside the tube, which ensured the regular occurrence of the NH3-SCR reaction on the outer Ce sites under the matching temperature window. In addition, the n-B oxidation would produce abundant intermediate NH2*, which could act as an extra reductant to promote NH3-SCR. Meanwhile, NH3-SCR could simultaneously remove the possible NOx byproducts of n-B decomposition. This novel strategy of constructing cooperative sites provides a distinct pathway for promoting the synergistic removal of n-B and NOx.


Assuntos
Óxidos de Nitrogênio , Catálise , Óxidos de Nitrogênio/química , Compostos Orgânicos Voláteis/química , Oxirredução
5.
Cancer Sci ; 114(5): 2014-2028, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36715549

RESUMO

Increasing evidence indicates that angiogenesis plays a pivotal role in tumor progression. Formin-like 2 (FMNL2) is well-known for promoting metastasis; however, the molecular mechanisms by which FMNL2 promotes angiogenesis in colorectal cancer (CRC) remain unclear. Here, we found that FMNL2 promotes angiogenesis and metastasis of CRC in vitro and in vivo. The GDB/FH3 domain of FMNL2 directly interacts with epidermal growth factor-like protein 6 (EGFL6). Formin-like 2 promotes EGFL6 paracrine signaling by exosomes to regulate angiogenesis in CRC. Cytoskeleton associated protein 4 (CKAP4) is a downstream target of EGFL6 and is involved in CRC angiogenesis. Epidermal growth factor-like protein 6 binds to the N-terminus of CKAP4 to promote the migration of HUVECs by activating the ERK/MMP pathway. These findings suggest that FMNL2 promotes the migration of HUVECs and enhances angiogenesis and tumorigenesis in CRC by regulating the EGFL6/CKAP4/ERK axis. Therefore, the EGFL6/CKAP4/ERK axis could be a candidate therapeutic target for CRC treatment.


Assuntos
Neoplasias Colorretais , Citoesqueleto , Humanos , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/patologia , Citoesqueleto/metabolismo , Família de Proteínas EGF/metabolismo , Forminas/metabolismo , Proteínas de Membrana/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo
6.
Biochem Biophys Res Commun ; 659: 10-19, 2023 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-37030020

RESUMO

The activating receptor natural killer group 2D (NKG2D) expressed by Natural killer (NK) cells functions as a "master-switch" in governing the awakening status of NK cells. The NKG2D-mediated cytotoxicity has been declared to be related with the expression levels of NKG2D ligands (NKG2DLs) expressed on tumor cells. Therefore, selective induction of NKG2DLs could be a reliable approach to enhance the efficacy of NK cell-mediated immunotherapy. Our existing study demonstrated that Ciclopirox Olamine (CPX), an off-patent antifungal agent, effectively elevated the expression of NKG2DLs on leukemia cells and sensitized leukemia cells to NK-cell mediated cytolysis. Induction of ROS production and AKT phosphorylation by CPX is essential for the up-regulation of NKG2DLs expressions. Inhibition of AKT by using AKT inhibitor MK2206 decreased both NKG2DLs expressions and NK cell cytotoxicity. These data indicated that increased sensitivity of CPX-treated leukemia cells to NK cell cytolysis was attributed to higher NKG2DLs expressions, resulting from activated AKT signaling pathway. Our findings support the ongoing development of CPX as an anti-tumor agent and suggest its promising immunotherapeutic value in the medication of leukemia.


Assuntos
Leucemia , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ciclopirox/farmacologia , Ciclopirox/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células Matadoras Naturais/metabolismo , Transdução de Sinais , Leucemia/tratamento farmacológico , Leucemia/metabolismo , Linhagem Celular Tumoral
7.
J Med Virol ; 95(8): e29013, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37537877

RESUMO

TANK-binding kinase 1 (TBK1) is crucial in producing type Ⅰ interferons (IFN-Ⅰ) that play critical functions in antiviral innate immunity. The tight regulation of TBK1, especially its activation, is very important. Here we identify NLRC4 as a positive regulator of TBK1. Ectopic expression of NLRC4 facilitates the activation of the IFN-ß promoter, the mRNA levels of IFN-ß, ISG54, and ISG56, and the nuclear translocation of interferon regulatory factor 3 induced by cGAS and STING. Consistently, under herpes simplex virus-1 (HSV-1) infection, knockdown or knockout of NLRC4 in BJ cells and primary peritoneal macrophages from Nlrc4-deficient (Nlrc4-/- ) mice show attenuated Ifn-ß, Isg54, and Isg56 mRNA transcription, TBK1 phosphorylation, and augmented viral replications. Moreover, Nlrc4-/- mice show higher mortality upon HSV-1 infection. Mechanistically, NLRC4 facilitates the interaction between TBK1 and the E3 ubiquitin ligase CBL to enhance the K63-linked polyubiquitination of TBK1. Our study elucidates a previously uncharacterized function for NLRC4 in upregulating the cGAS-STING signaling pathway and antiviral innate immunity.


Assuntos
Herpes Simples , Herpesvirus Humano 1 , Transdução de Sinais , Animais , Camundongos , Antivirais/metabolismo , Herpes Simples/genética , Herpesvirus Humano 1/genética , Imunidade Inata , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Fosforilação , Transdução de Sinais/genética , Ubiquitinação
8.
Immun Ageing ; 20(1): 75, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102684

RESUMO

BACKGROUND: Although the concept of declined immune function associated with cancer has been accepted extensively, real-world clinical studies focusing on analysis of the peripheral blood immune changes underlying ageing, immunity and cancer are scarce. METHODS: In this case-control study, we retrospectively analysed 1375 cancer patients and enrolled 275 age and gender matched healthy individuals. Flow cytometry was conducted to assess the immune changes. Further analysis was examined by SPSS 17.0 and GraphPad Prism 9 software. RESULTS: Cancer patients showed obviously decreased CD3+ T, CD3+CD4+ Th, CD3+CD8+ CTL, CD19+ B, CD16+CD56+ NK cell counts and lower percentage of PD-1 (programmed cell death protein-1, PD-1) positive cells than healthy control (P < 0.0001). For cancer patients, the reference range of circulating percentage of PD-1+CD45+ cells, PD-1+CD3+ T cells, PD-1+CD3+CD4+ Th cells and PD-1+CD3+CD8+ CTL (Cytotoxic T Lymphocyte, CTL) were 11.2% (95% CI 10.8%-11.6%), 15.5% (95% CI 14.7%-16.0%), 15.4% (95% CI 14.9%-16.0%) and 14.5% (95% CI 14.0%-15.5%), respectively. Moreover, the reduction of CD3+ T, CD3+CD4+ Th, CD3+CD8+ CTL, CD19+ B cell counts accompanied with age and stage advancing (P < 0.05). CD16+CD56+ NK cells decreased with stage, but elevated in aged and male cancer patients (P < 0.05). Additionally, the percentage of PD-1 positive cells varied across cancer types, raised with age and stage. Head and neck, pancreatic, gynaecological and lung demonstrated a higher level of the percentage of PD-1 positive cells than melanoma, prostate, and breast cancer (P < 0.05). CONCLUSIONS: This study provides the reference range of the percentage of PD-1 positive cells on peripheral blood, confirms the decreased immune cells and a series of immune changes accompanying with cancer, expands our real world evidence to better understand the interactions of ageing, cancer and immunity. Moreover, the circulating percentage of PD-1 positive cells shows similar tumor type distribution with tumor mutational burden (TMB), supports that it maybe a potential predictive biomarker for immune checkpoint inhibitor therapy.

9.
Pak J Med Sci ; 39(2): 587-594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36950390

RESUMO

Objective: This meta-analysis was designed to assess if pre-operative low skeletal muscle mass impacts mortality rates of patients undergoing abdominal aortic aneurysm (AAA) repair. Methods: Datasets of PubMed, CENTRAL, ScienceDirect, Embase, and Google Scholar were searched from 1st January 1980 to 15th December 2021 for studies assessing the role of low skeletal muscle mass on mortality rates of AAA repair. Studies measuring skeletal muscle mass on computed tomography scans and reporting long-term mortality (>1 year) were included. Multivariable adjusted ratios were combined in a random-effects model. Results: Fifteen studies with 3776 patients were included. Meta-analysis showed a statistically significant increased risk of all-cause mortality in patients with low skeletal muscle mass (HR: 2.07 95% CI: 1.56, 2.74 I2=65% p<0.00001) as compared to normal muscle mass patients. Pooled data indicated that low skeletal muscle mass was associated with statistically significant increased risk of mortality in studies on endovascular repair (HR: 2.86 95% CI: 1.95, 4.20 I2=58% p<0.00001) as well as those including a mixed group of patients (HR: 1.39 95% CI: 1.06, 1.82 I2=31% p=0.02). Conclusion: Low skeletal muscle mass in AAA patients undergoing surgical repair is associated with increased risk of long-term mortality. Current evidence is limited by the retrospective nature of data and variability in defining and measuring low skeletal muscle mass. There is a need for future prospective studies defining the optimal cut-off of low skeletal muscle mass in different populations.

10.
J Med Virol ; 94(9): 4490-4501, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35577759

RESUMO

Stimulator of interferon genes (STING) is a pivotal innate immune adaptor, and its functions during DNA virus infections have been extensively documented. However, its homeostatic regulation is not well understood. Our study demonstrates that Unc-93 homolog B1 (UNC93B1) is a crucial checker for STING to prevent hyperactivation. Ectopic expression of UNC93B1 attenuates IFN-ß promoter activity and the transcriptions of IFN-ß, ISG54, and ISG56 genes. Moreover, UNC93B1 also blocks the IRF3 nuclear translocation induced by ectopic expression of both cyclic GMP-AMP synthase (cGAS) and STING and reduces the stability of STING by facilitating its autophagy-lysosome degradation, which can be reversed by lysosome inhibitors. Mechanistically, UNC93B1 interacts with STING and suppresses STING-activated downstream signaling by delivering STING to the lysosomes for degradation, depending on its trafficking capability. UNC93B1 knockout in human embryonic kidney 293T cells facilitates IFN-ß promoter activity, IFN-ß, ISG54, and ISG56 transcriptions, and IRF3 nuclear translocation induced by ectopic expression of cGAS and STING. Infected with herpes simplex virus-1 (HSV-1), UNC93B1 knockdown BJ cells or primary peritoneal macrophages from Unc93b1-deficient (Unc93b1-/- ) mice show enhanced IFN-ß, ISG54, and ISG56 transcriptions, TBK1 phosphorylation, and reduced STING degradation and viral replication. In addition, Unc93b1-/-  mice exhibit higher IFN-ß, ISG54, and ISG56 transcriptions and lower mortality upon HSV-1 infection in vivo. Collectively, these findings demonstrate that UNC93B1 attenuates the cGAS-STING signaling pathway by targeting STING for autophagy-lysosome degradation and provide novel insights into the function of UNC93B1 in antiviral innate immunity.


Assuntos
Proteínas de Membrana , Proteínas de Membrana Transportadoras , Nucleotidiltransferases , Animais , Autofagia , Células HEK293 , Humanos , Imunidade Inata , Interferon beta/genética , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Nucleotidiltransferases/metabolismo , Transdução de Sinais
11.
Mol Cell Probes ; 59: 101759, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34265372

RESUMO

OBJECTIVE: The natural killer (NK) group 2D (NKG2D) receptor plays a crucial role in NK cell-mediated anti-tumor immunity. NKG2D anti-proliferative effect is mediated by direct interactions of the receptor with its ligands that may be considered as a potential target for NK-based immunotherapeutic strategy in cancer cells. METHODS: Here we report that a natural product adenanthin significantly promotes NKG2D ligands expression in hepatoma cells. The effect was determined using flow cytometry analysis. The activity of NK cell was evaluated by measuring its degranulation activity and cytotoxicity. RESULTS: Our data indicates that the induction of NKG2D ligand binding to liver cancer cell surface receptors greatly improves the killing activity of NK cells against the cancer cells. CONCLUSIONS: This is the first report of a new mechanism anti-cancer effects of adenanthin mediated by an indirect activation of NK cells. Our data suggests that adenanthin may be used to sensitize NK cells in tumor immunotherapy.


Assuntos
Carcinoma Hepatocelular , Diterpenos do Tipo Caurano , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Humanos , Células Matadoras Naturais , Ligantes , Neoplasias Hepáticas/tratamento farmacológico
12.
Cancer ; 126(5): 1016-1030, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31769872

RESUMO

BACKGROUND: PLEKHA5 has previously been identified as a novel molecule implicated in melanoma brain metastasis, a disease that continues to portend a poor prognosis. The aim of this study was to further investigate the functional role of PLEKHA5 in disseminated melanoma. METHODS: The impact of PLEKHA5 on proliferation and tumor growth was examined in vitro and in melanoma xenograft models, including brain-tropic melanomas (melanomas tending to disseminate to the brain). In vitro loss- and gain-of-function studies were used to explore the underlying mechanisms of PLEKHA5-mediated tumor growth and the crosstalk between PLEKHA5 and PI3K/AKT/mTOR or MAPK/ERK signaling. The clinical relevance of PLEKHA5 dysregulation was further investigated in a cohort of matched cranial and extracranial melanoma metastases. RESULTS: PLEKHA5 stable knockdown negatively regulated cell proliferation by inhibiting the G1 -to-S cell cycle transition, which coincided with upregulation of the cell cycle regulator PDCD4. Conversely, ectopic PLEKHA5 expression exhibited the inverse effect. PLEKHA5 knockdown significantly inhibited tumor growth, whereas its overexpression upregulated the growth of tumors, which was induced by cranial and subcutaneous inoculation of cells in nude mice. PLEKHA5 modulation affected PDCD4 protein stability and was coupled with changes in PI3K/AKT/mTOR pathway signaling. High PDCD4 expression in cerebral specimens was associated with better overall survival. CONCLUSIONS: This study further supports the role of PLEKHA5 as a regulator of melanoma growth at distant sites, including the brain. Furthermore, the results highlight the significance of PDCD4 dysregulation in disseminated melanoma and implicate PDCD4 as a possible causal link between PLEKHA5 and cell proliferation and growth.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Encefálicas/secundário , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Melanoma/patologia , Adulto , Idoso , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Biomarcadores Tumorais/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Feminino , Seguimentos , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto , Adulto Jovem
13.
Pharmacol Res ; 159: 104955, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32485279

RESUMO

Aberrant activation of Wnt signaling plays a critical role in the initiation and progression of colorectal cancer (CRC). Chlorquinaldol (CQD) is a topical antimicrobial agent used to treat skin infections. Little is known about the anticancer activity of CQD and its underlying mechanisms. In this study, CQD was demonstrated to inhibit Wnt/ß-catenin signaling through targeting the downstream part of this pathway. The results showed that CQD could inhibit the acetylation of ß-catenin and disrupt the interaction of ß-catenin with T-cell factor 4 (TCF4), leading to reduced binding of ß-catenin to the promoters of Wnt target genes and downregulation of the expression of these target genes. Moreover, treatment with CQD suppressed the proliferation, migration, invasion and stemness of CRC cells. In APCmin/+ mice and CRC cell xenografts, administration of CQD suppressed tumor growth and the expression of Wnt target genes c-Myc and Leucine-rich G protein-coupled receptor-5 (LGR5). These results strongly suggest that CQD may be a promising therapeutic agent in the treatment of CRC.


Assuntos
Antineoplásicos/farmacologia , Clorquinaldol/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , beta Catenina/metabolismo , Acetilação , Animais , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Genes APC , Células HCT116 , Células HEK293 , Células HT29 , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Camundongos Transgênicos , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Ligação Proteica , Processamento de Proteína Pós-Traducional , Carga Tumoral/efeitos dos fármacos , Via de Sinalização Wnt , Ensaios Antitumorais Modelo de Xenoenxerto
14.
J Cell Mol Med ; 23(11): 7796-7809, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31503410

RESUMO

Sepsis-induced cardiac dysfunction represents a main cause of death in intensive care units. Previous studies have indicated that GSK-3ß is involved in the modulation of sepsis. However, the signalling details of GSK-3ß regulation in endotoxin lipopolysaccharide (LPS)-induced septic myocardial dysfunction are still unclear. Here, based on the rat septic myocardial injury model, we found that LPS could induce GSK-3ß phosphorylation at its active site (Y216) and up-regulate FOXO3A level in primary cardiomyocytes. The FOXO3A expression was significantly reduced by GSK-3ß inhibitors and further reversed through ß-catenin knock-down. This pharmacological inhibition of GSK-3ß attenuated the LPS-induced cell injury via mediating ß-catenin signalling, which could be abolished by FOXO3A activation. In vivo, GSK-3ß suppression consistently improved cardiac function and relieved heart injury induced by LPS. In addition, the increase in inflammatory cytokines in LPS-induced model was also blocked by inhibition of GSK-3ß, which curbed both ERK and NF-κB pathways, and suppressed cardiomyocyte apoptosis via activating the AMP-activated protein kinase (AMPK). Our results demonstrate that GSK-3ß inhibition attenuates myocardial injury induced by endotoxin that mediates the activation of FOXO3A, which suggests a potential target for the therapy of septic cardiac dysfunction.


Assuntos
Cardiotônicos/farmacologia , Proteína Forkhead Box O3/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Inflamação/patologia , Miocárdio/patologia , Inibidores de Proteínas Quinases/farmacologia , Adenilato Quinase/metabolismo , Animais , Apoptose/efeitos dos fármacos , Regulação para Baixo/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicogênio Sintase Quinase 3 beta/metabolismo , Testes de Função Cardíaca , Lipopolissacarídeos , Masculino , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , beta Catenina/metabolismo
15.
Biochem Biophys Res Commun ; 503(4): 3057-3063, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30144974

RESUMO

The natural killer group 2D (NKG2D) receptor on natural killer (NK) cells play an important role in immunosurveillance to cancer cells, which could mediate the eradication of tumor cells through specific interactions with NKG2D ligands on tumor cells. Here we report one natural compound aurovertin B from basidiomycete Albatrellus confluens significantly stimulates the expression of NKG2D ligands on tumor cells, which greatly sensitizes its recognition and lysis by NK cell. It is completely a novel role for aurovertin B to target tumor cells to death mediated by NK cells and our findings indicate aurovertin B may deserve further development as sensitizing agent in NK cell mediated cancer immunotherapy.


Assuntos
Antineoplásicos/farmacologia , Aurovertinas/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Citotoxicidade Imunológica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Antineoplásicos/química , Aurovertinas/química , Basidiomycota/química , Linhagem Celular Tumoral , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Células Matadoras Naturais/imunologia , Regulação para Cima/genética
16.
Cancer Cell Int ; 18: 124, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30186040

RESUMO

BACKGROUND: Growing evidence suggests that MiRNAs play essential roles in the initiation and progression of colorectal cancer (CRC). The aberrant expression of miR-384 has been reported in some cancers. However, the role and mechanism of miR-384 in CRC proliferation remains unknown. METHODS: The expression of miR-384 was detected in CRC and their paired normal tissues by real-time PCR. In vivo and in vitro assays were conducted to confirm the role of miR-384 in the proliferation of CRC. Bioinformatics analysis, luciferase reporter assays, western blot and in vitro assays were used to confirm that AKT3 was the target gene of miR-384. Finally, Spearman's correlation analyses was carried out to analyze the relationship between miR-384 expression and AKT3 expression in CRC. RESULTS: MiR-384 was down­regulated in CRC tissues. The in vivo and vitro functional assays verified that the ectopic upregulation of miR-384 inhibited the proliferation of CRC and the inhibition of miR-384 promoted the proliferation of CRC. Bioinformatics analysis, luciferase reporter assays, western blot and in vitro functional assays confirmed AKT3 as the target gene of miR-384. The expression of miR-384 was negatively correlated with the expressions of AKT3. CONCLUSION: Our study verified that miR-384 could significantly suppress the proliferation of CRC by directing targeting AKT3.

17.
Int J Mol Sci ; 19(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29772705

RESUMO

B-Myb has been shown to play an important oncogenic role in several types of human cancers, including non-small-cell lung cancer (NSCLC). We previously found that B-Myb is aberrantly upregulated in NSCLC, and overexpression of B-Myb can significantly promote NSCLC cell growth and motility. In the present study, we have further investigated the therapeutic potential of B-Myb in NSCLC. Kaplan⁻Meier and Cox proportional hazards analysis indicated that high expression of B-Myb is significantly associated with poor prognosis in NSCLC patients. A loss-of-function study demonstrated that depletion of B-Myb resulted in significant inhibition of cell growth and delayed cell cycle progression in NSCLC cells. Notably, B-Myb depletion also decreased NSCLC cell migration and invasion ability as well as colony-forming ability. Moreover, an in vivo study demonstrated that B-Myb depletion caused significant inhibition of tumor growth in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-seq analysis revealed that B-Myb depletion led to deregulation of various downstream genes, including insulin-like growth factor binding protein 3 (IGFBP3). Overexpression of IGFBP3 suppressed the B-Myb-induced proliferation and migration, whereas knockdown of IGFBP3 significantly rescued the inhibited cell proliferation and motility caused by B-Myb siRNA (small interfering RNA). Expression and luciferase reporter assays revealed that B-Myb could directly suppress the expression of IGFBP3. Taken together, our results suggest that B-Myb functions as a tumor-promoting gene via suppressing IGFBP3 and could serve as a novel therapeutic target in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular/genética , Regulação Neoplásica da Expressão Gênica , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Transativadores/genética , Animais , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Carcinoma Pulmonar de Células não Pequenas/patologia , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Humanos , Proteína 3 de Ligação a Fator de Crescimento Semelhante à Insulina/genética , Neoplasias Pulmonares/mortalidade , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Estadiamento de Neoplasias , Prognóstico , Regiões Promotoras Genéticas , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Interferente Pequeno/genética
18.
Int J Mol Sci ; 18(6)2017 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-28555007

RESUMO

B-Myb is a transcription factor that is overexpressed and plays an oncogenic role in several types of human cancers. However, its potential implication in lung cancer remains elusive. In the present study, we have for the first time investigated the expression profile of B-Myb and its functional impact in lung cancer. Expression analysis by quantificational real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry demonstrated that B-Myb expression is aberrantly overexpressed in non-small cell lung cancer (NSCLC), and positively correlated with pathologic grade and clinical stage of NSCLC. A gain-of-function study revealed that overexpression of B-Myb significantly increases lung cancer cell growth, colony formation, migration, and invasion. Conversely, a loss-of-function study showed that knockdown of B-Myb decreases cell growth, migration, and invasion. B-Myb overexpression also promoted tumor growth in vivo in a NSCLC xenograft nude mouse model. A molecular mechanistic study by RNA-sequencing (RNA-seq) analysis showed that B-Myb overexpression causes up-regulation of various downstream genes (e.g., COL11A1, COL6A1, FN1, MMP2, NID1, FLT4, INSR, and CCNA1) and activation of multiple critical pathways (e.g., extracellular signal-regulated kinases (ERK) and phosphorylated-protein kinase B (Akt) signaling pathways) involved in cell proliferation, tumorigenesis, and metastasis. Collectively, our results indicate a tumor-promoting role for B-Myb in NSCLC and thus imply its potential as a target for the diagnosis and/or treatment of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transativadores/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Movimento Celular/fisiologia , Proliferação de Células/genética , Proliferação de Células/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Interferente Pequeno/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise Serial de Tecidos , Transativadores/genética
19.
Biochem Biophys Res Commun ; 458(3): 501-508, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25666944

RESUMO

Recently, we have demonstrated that proline-rich protein 11 (PRR11) is a novel tumor-related gene product likely implicated in the regulation of cell cycle progression as well as lung cancer development. However, its precise role in cell cycle progression remains unclear. In the present study, we have further investigated the expression pattern and functional implication of PRR11 during cell cycle in detail in human lung carcinoma-derived H1299 cells. According to our immunofluorescence study, PRR11 was expressed largely in cytoplasm, the amount of PRR11 started to increase in the late S phase, and was retained until just before mitotic telophase. Consistent with those observations, siRNA-mediated knockdown of PRR11 caused a significant cell cycle arrest in the late S phase. Intriguingly, the treatment with dNTPs further augmented PRR11 silencing-mediated S phase arrest. Moreover, knockdown of PRR11 also resulted in a remarkable retardation of G2/M progression, and PRR11-knockdown cells subsequently underwent G2 phase cell cycle arrest accompanied by obvious mitotic defects such as multipolar spindles and multiple nuclei. In addition, forced expression of PRR11 promoted the premature Chromatin condensation (PCC), and then proliferation of PRR11-expressing cells was massively attenuated and induced apoptosis. Taken together, our current observations strongly suggest that PRR11, which is strictly regulated during cell cycle progression, plays a pivotal role in the regulation of accurate cell cycle progression through the late S phase to mitosis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Ciclo Celular , Cromatina/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Divisão Celular , Linhagem Celular Tumoral , Proliferação de Células , Cromatina/patologia , Fase G2 , Regulação Neoplásica da Expressão Gênica , Humanos , Pulmão/metabolismo , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Proteínas/genética , Interferência de RNA , Fase S , Regulação para Cima
20.
Zhongguo Zhong Yao Za Zhi ; 39(12): 2341-4, 2014 Jun.
Artigo em Zh | MEDLINE | ID: mdl-25244772

RESUMO

OBJECTIVE: To investigate the mechanism that the formulas for activating blood and resolving stasis can regulate hemopoietic stem cell to produce new blood. METHOD: Rats were established animal model of acute cerebral infarction by referencing Olivette' method. They were randomly divided into model group, the group of the high, middle, low dose of the formulas for activating blood and resolving stasis. Each group and then wasrandomly divided into subgroups by 1, 3, 7, 14, 28 d. Xuesaitong capsule was formulated into 20, 40, 60 g x L(-1) with normal saline. The rats were given gavage drugs once a day until the experient ended, and the model group was administrated by intragastrical perfusion of normal saline. ELISA was used to detect the expression of SCF in peripheral blood and bone marrow among different groups at different time points. Flow cytometry was used to observe the changes of CD117 in blood and bone marrow. RESULT: The CD117+ HSC and SCF concentration in peripheral blood and bone marrow of model group were increasing during 1-14 d,there was a peak on the 14th day, then the expression was reducing. CD117+ HSC and SCF concentration rising trend in the group of the high, middle dose of the formulas for activating blood and resolving stasis was preceded model group (P < 0.05). CONCLUSION: Activating blood and resolving stasis can regulate hemopoietic stem cell to produce new blood, and it is through the regulation of CD117+ HSC number to achieve the purpose.


Assuntos
Infarto Cerebral/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Células-Tronco Hematopoéticas/efeitos dos fármacos , Animais , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Cápsulas , Infarto Cerebral/sangue , Infarto Cerebral/genética , Infarto Cerebral/metabolismo , Química Farmacêutica , Células-Tronco Hematopoéticas/metabolismo , Humanos , Masculino , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-kit/metabolismo , Ratos , Ratos Sprague-Dawley , Fator de Células-Tronco/genética , Fator de Células-Tronco/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA