Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Small ; 20(19): e2309230, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38112271

RESUMO

Bone infection poses a major clinical challenge that can hinder patient recovery and exacerbate postoperative complications. This study has developed a bioactive composite scaffold through the co-assembly and intrafibrillar mineralization of collagen fibrils and zinc oxide (ZnO) nanowires (IMC/ZnO). The IMC/ZnO exhibits bone-like hierarchical structures and enhances capabilities for osteogenesis, antibacterial activity, and bacteria-infected bone healing. During co-cultivation with human bone marrow mesenchymal stem cells (BMMSCs), the IMC/ZnO improves BMMSC adhesion, proliferation, and osteogenic differentiation even under inflammatory conditions. Moreover, it suppresses the activity of Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans by releasing zinc ions within the acidic infectious microenvironment. In vivo, the IMC/ZnO enables near-complete healing of infected bone defects within the intricate oral bacterial milieu, which is attributed to IMC/ZnO orchestrating M2 macrophage polarization, and fostering an osteogenic and anti-inflammatory microenvironment. Overall, these findings demonstrate the promise of the bioactive scaffold IMC/ZnO for treating bacteria-infected bone defects.


Assuntos
Regeneração Óssea , Colágeno , Células-Tronco Mesenquimais , Nanofios , Osteogênese , Alicerces Teciduais , Óxido de Zinco , Óxido de Zinco/química , Óxido de Zinco/farmacologia , Nanofios/química , Regeneração Óssea/efeitos dos fármacos , Alicerces Teciduais/química , Humanos , Colágeno/química , Células-Tronco Mesenquimais/citologia , Osteogênese/efeitos dos fármacos , Animais , Porphyromonas gingivalis/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Streptococcus mutans/fisiologia , Streptococcus mutans/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos
2.
BMC Infect Dis ; 24(1): 566, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38844852

RESUMO

BACKGROUND: Early and appropriate antibiotic treatment improves the clinical outcome of patients with sepsis. There is an urgent need for rapid identification (ID) and antimicrobial susceptibility testing (AST) of bacteria that cause bloodstream infection (BSI). Rapid ID and AST can be achieved by short-term incubation on solid medium of positive blood cultures using MALDI-TOF mass spectrometry (MS) and the BD M50 system. The purpose of this study is to evaluate the performance of rapid method compared to traditional method. METHODS: A total of 124 mono-microbial samples were collected. Positive blood culture samples were short-term incubated on blood agar plates and chocolate agar plates for 5 ∼ 7 h, and the rapid ID and AST were achieved through Zybio EXS2000 MS and BD M50 System, respectively. RESULTS: Compared with the traditional 24 h culture for ID, this rapid method can shorten the cultivation time to 5 ∼ 7 h. Accurate organism ID was achieved in 90.6% of Gram-positive bacteria (GP), 98.5% of Gram-negative bacteria (GN), and 100% of fungi. The AST resulted in the 98.5% essential agreement (EA) and 97.1% category agreements (CA) in NMIC-413, 99.4% EA and 98.9% CA in PMIC-92, 100% both EA and CA in SMIC-2. Besides, this method can be used for 67.2% (264/393) of culture bottles during routine work. The mean turn-around time (TAT) for obtaining final results by conventional method is approximately 72.6 ± 10.5 h, which is nearly 24 h longer than the rapid method. CONCLUSIONS: The newly described method is expected to provide faster and reliable ID and AST results, making it an important tool for rapid management of blood cultures (BCs). In addition, this rapid method can be used to process most positive blood cultures, enabling patients to receive rapid and effective treatment.


Assuntos
Bactérias , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Testes de Sensibilidade Microbiana/métodos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Bactérias/efeitos dos fármacos , Bactérias/isolamento & purificação , Antibacterianos/farmacologia , Fungos/efeitos dos fármacos , Fungos/isolamento & purificação , Hemocultura/métodos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Negativas/isolamento & purificação , Fatores de Tempo , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/isolamento & purificação , Sepse/microbiologia , Sepse/tratamento farmacológico , Sepse/diagnóstico
3.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469790

RESUMO

BACKGROUND: This case involves a 28-year-old pregnant woman (39w+2) who was admitted to obstetrics due to abdominal tightness and bacteremia with Gardnerella vaginalis which developed after caesarean section and vaginal myomectomy. METHODS: A blood culture was performed, and the bacteria were identified through mass spectrometry. RESULTS: Mass spectrometry data indicated that the infection bacteria were Gardnerella vaginalis. The patient's temperature returned to normal after oral ampicillin in combination with clindamycin. CONCLUSIONS: Gardnerella vaginalis bacteremia is very rare in clinical practice, and the combination of ampicillin and clindamycin has a good therapeutic effect. This study may provide a reference for the diagnosis and treatment of Gardnerella vaginalis bacteremia.


Assuntos
Bacteriemia , Miomectomia Uterina , Vaginose Bacteriana , Feminino , Gravidez , Humanos , Adulto , Gardnerella vaginalis , Gestantes , Clindamicina/uso terapêutico , Cesárea/efeitos adversos , Ampicilina/uso terapêutico , Bacteriemia/diagnóstico , Bacteriemia/tratamento farmacológico , Bacteriemia/microbiologia , Vaginose Bacteriana/tratamento farmacológico , Vagina
4.
Plant Physiol ; 188(3): 1665-1685, 2022 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-34792564

RESUMO

Ripening of fleshy fruits involves both diverse post-translational modifications (PTMs) and dynamic transcriptional reprogramming, but the interconnection between PTMs, such as protein phosphorylation and transcriptional regulation, in fruit ripening remains to be deciphered. Here, we conducted a phosphoproteomic analysis during banana (Musa acuminata) ripening and identified 63 unique phosphopeptides corresponding to 49 proteins. Among them, a Musa acuminata basic leucine zipper transcription factor21 (MabZIP21) displayed elevated phosphorylation level in the ripening stage. MabZIP21 transcript and phosphorylation abundance increased during banana ripening. Genome-wide MabZIP21 DNA binding assays revealed MabZIP21-regulated functional genes contributing to banana ripening, and electrophoretic mobility shift assay, chromatin immunoprecipitation coupled with quantitative polymerase chain reaction, and dual-luciferase reporter analyses demonstrated that MabZIP21 stimulates the transcription of a subset of ripening-related genes via directly binding to their promoters. Moreover, MabZIP21 can be phosphorylated by MaMPK6-3, which plays a role in banana ripening, and T318 and S436 are important phosphorylation sites. Protein phosphorylation enhanced MabZIP21-mediated transcriptional activation ability, and transient overexpression of the phosphomimetic form of MabZIP21 accelerated banana fruit ripening. Additionally, MabZIP21 enlarges its role in transcriptional regulation by activating the transcription of both MaMPK6-3 and itself. Taken together, this study reveals an important machinery of protein phosphorylation in banana fruit ripening in which MabZIP21 is a component of the complex phosphorylation pathway linking the upstream signal mediated by MaMPK6-3 with transcriptional controlling of a subset of ripening-associated genes.


Assuntos
Frutas/crescimento & desenvolvimento , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Musa/crescimento & desenvolvimento , Musa/genética , Fosforilação/genética , Fatores de Transcrição/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Frutas/genética , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Musa/metabolismo , Fatores de Transcrição/genética
5.
J Integr Plant Biol ; 65(1): 150-166, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36103229

RESUMO

The ethylene insensitive 3/ethylene insensitive 3-like (EIN3/EIL) plays an indispensable role in fruit ripening. However, the regulatory mechanism that links post-translational modification of EIN3/EIL to fruit ripening is largely unknown. Here, we studied the expression of 13 MaEIL genes during banana fruit ripening, among which MaEIL9 displayed higher enhancement particularly in the ripening stage. Consistent with its transcript pattern, abundance of MaEIL9 protein gradually increased during the ripening process, with maximal enhancement in the ripening. DNA affinity purification (DAP)-seq analysis revealed that MaEIL9 directly targets a subset of genes related to fruit ripening, such as the starch hydrolytic genes MaAMY3D and MaBAM1. Stably overexpressing MaEIL9 in tomato fruit hastened fruit ripening, whereas transiently silencing this gene in banana fruit retarded the ripening process, supporting a positive role of MaEIL9 in fruit ripening. Moreover, oxidation of methionines (Met-129, Met-130, and Met-282) in MaEIL9 resulted in the loss of its DNA-binding capacity and transcriptional activation activity. Importantly, we identified MaEIL9 as a potential substrate protein of methionine sulfoxide reductase A MaMsrA4, and oxidation of Met-129, Met-130, and Met-282 in MaEIL9 could be restored by MaMsrA4. Collectively, our findings reveal a novel regulatory network controlling banana fruit ripening, which involves MaMsrA4-mediated redox regulation of the ethylene signaling component MaEIL9.


Assuntos
Musa , Musa/genética , Musa/metabolismo , Metionina/genética , Metionina/metabolismo , Proteínas de Plantas/metabolismo , Frutas/metabolismo , Racemetionina/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas
6.
Am J Respir Cell Mol Biol ; 66(1): 53-63, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34370624

RESUMO

Idiopathic pulmonary fibrosis (IPF), a devastating, fibroproliferative, chronic lung disorder, is associated with expansion of fibroblasts/myofibroblasts, which leads to excessive production and deposition of extracellular matrix. IPF is typically clinically identified as end-stage lung disease, after fibrotic processes are well-established and advanced. Fibroblasts have been shown to be critically important in the development and progression of IPF. We hypothesize that differential chromatin access can drive genetic differences in IPF fibroblasts relative to healthy fibroblasts. To this end, we performed assay of transposase-accessible chromatin sequencing to identify differentially accessible regions within the genomes of fibroblasts from healthy and IPF lungs. Multiple motifs were identified to be enriched in IPF fibroblasts compared with healthy fibroblasts, including binding motifs for TWIST1 and FOXA1. RNA sequencing identified 93 genes that could be annotated to differentially accessible regions. Pathway analysis of the annotated genes identified cellular adhesion, cytoskeletal anchoring, and cell differentiation as important biological processes. In addition, single nucleotide polymorphism analysis showed that linkage disequilibrium blocks of IPF risk single nucleotide polymorphisms with IPF-accessible regions that have been identified to be located in genes that are important in IPF, including MUC5B, TERT, and TOLLIP. Validation studies in isolated lung tissue confirmed increased expression for TWIST1 and FOXA1 in addition to revealing SHANK2 and CSPR2 as novel targets. Thus, modulation of differential chromatin access may be an important mechanism in the pathogenesis of lung fibrosis.


Assuntos
Epigênese Genética , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Transcriptoma/genética , Sequência de Bases , Cromatina/metabolismo , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único/genética , Fatores de Transcrição/metabolismo , Transposases/metabolismo
7.
Molecules ; 27(20)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36296418

RESUMO

Repurposing of waste beer yeast (WBY) that a main by-product of brewing industry has attracted considerable attention in recent years. In this study, the protein and polypeptide were extracted by ultrasonic-assisted extraction and enzymatic hydrolysis with process optimization, which resulted in a maximum yield of 73.94% and 61.24%, respectively. Both protein and polypeptide of WBY were composed of 17 Amino acids (AA) that included seven essential amino acids (EAA), and typically rich in glutamic acid (Glu) (6.46% and 6.13%) and glycine (Gly) (5.26% and 6.02%). AA score (AAS) revealed that the threonine (Thr) and SAA (methionine + cysteine) were the limiting AA of WBY protein and polypeptide. Furthermore, the antioxidant activities of WBY polypeptide that lower than 10 kDa against hydroxyl radical, DPPH radical, and ABTS radical were 95.10%, 98.37%, and 69.41%, respectively, which was significantly higher than that of WBY protein (25-50 kDa). Therefore, the protein and polypeptide extracted from WBY can be a source of high-quality AA applying in food and feed industry. Due to small molecular weight, abundant AA, and great antioxidant activity, WBY polypeptide can be promisingly used as functional additives in the pharmaceutical and healthcare industry.


Assuntos
Aminoácidos , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , Aminoácidos/metabolismo , Cerveja , Saccharomyces cerevisiae/metabolismo , Radical Hidroxila , Cisteína , Peptídeos/química , Treonina , Glicina , Metionina , Preparações Farmacêuticas , Glutamatos
8.
J Integr Plant Biol ; 64(11): 2150-2167, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35980297

RESUMO

Malformed fruits depreciate a plant's market value. In tomato (Solanum lycopersicum), fruit malformation is associated with the multi-locule trait, which involves genes regulating shoot apical meristem (SAM) development. The expression pattern of TOPLESS3 (SlTPL3) throughout SAM development prompted us to investigate its functional significance via RNA interference (RNAi) and clustered regularly interspaced short palindromic repeats/CRISPR-associated nuclease 9 (Cas9)-mediated gene editing. Lower SlTPL3 transcript levels resulted in larger fruits with more locules and larger SAMs at the 5 d after germination (DAG5) stage. Differentially expressed genes in the SAM of wild-type (WT) and SlTPL3-RNAi plants, identified by transcriptome deep sequencing (RNA-seq), were enriched in the gibberellin (GA) biosynthesis and plant hormone signaling pathways. Moreover, exogenous auxin and paclobutrazol treatments rescued the multi-locule phenotype, indicating that SlTPL3 affects SAM size by mediating auxin and GA levels in the SAM. Furthermore, SlTPL3 interacted with WUSCHEL (SlWUS), which plays an important role in SAM size maintenance. We conducted RNA-seq and DNA affinity purification followed by sequencing (DAP-seq) analyses to identify the genes regulated by SlTPL3 and SlWUS in the SAM and to determine how they regulate SAM size. We detected 24 overlapping genes regulated by SlTPL3 and SlWUS and harboring an SlWUS-binding motif in their promoters. Furthermore, functional annotation revealed a notable enrichment for functions in auxin transport, auxin signal transduction, and GA biosynthesis. Dual-luciferase assays also revealed that SlTPL3 enhances SlWUS-mediated regulation (repression and activation) of SlPIN3 and SlGA2ox4 transcription, indicating that the SlTPL3-SlWUS module regulates SAM size by mediating auxin distribution and GA levels, and perturbations of this module result in enlarged SAM. These results provide novel insights into the molecular mechanism of SAM maintenance and locule formation in tomato and highlight the SlTPL3-SlWUS module as a key regulator.


Assuntos
Meristema , Solanum lycopersicum , Meristema/metabolismo , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
Hum Genet ; 139(10): 1261-1272, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32318854

RESUMO

Nonsyndromic cleft lip with or without cleft palate (NSCLP) is a common birth defect for which only ~ 20% of the underlying genetic variation has been identified. Variants in noncoding regions have been increasingly suggested to contribute to the missing heritability. In this study, we investigated whether variation in craniofacial enhancers contributes to NSCLP. Candidate enhancers were identified using VISTA Enhancer Browser and previous publications. Prioritization was based on patterning defects in knockout mice, deletion/duplication of craniofacial genes in animal models and results of whole exome/whole genome sequencing studies. This resulted in 20 craniofacial enhancers to be investigated. Custom amplicon-based sequencing probes were designed and used for sequencing 380 NSCLP probands (from multiplex and simplex families of non-Hispanic white (NHW) and Hispanic ethnicities) using Illumina MiSeq. The frequencies of identified variants were compared to ethnically matched European (CEU) and Los Angeles Mexican (MXL) control genomes and used for association analyses. Variants in mm427/MSX1 and hs1582/SPRY1 showed genome-wide significant association with NSCLP (p ≤ 6.4 × 10-11). In silico analysis showed that these enhancer variants may disrupt important transcription factor binding sites. Haplotypes involving these enhancers and also mm435/ABCA4 were significantly associated with NSCLP, especially in NHW (p ≤ 6.3 × 10-7). Importantly, groupwise burden analysis showed several enhancer combinations significantly over-represented in NSCLP individuals, revealing novel NSCLP pathways and supporting a polygenic inheritance model. Our findings support the role of craniofacial enhancer sequence variation in the etiology of NSCLP.


Assuntos
Fenda Labial/genética , Fissura Palatina/genética , Elementos Facilitadores Genéticos , Predisposição Genética para Doença , Variação Genética , Herança Multifatorial , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Doenças Assintomáticas , Fenda Labial/etnologia , Fenda Labial/patologia , Fissura Palatina/etnologia , Fissura Palatina/patologia , Embrião de Mamíferos , Feminino , Estudos de Associação Genética , Sequenciamento de Nucleotídeos em Larga Escala , Hispânico ou Latino , Humanos , Fator de Transcrição MSX1/genética , Masculino , Proteínas de Membrana/genética , Camundongos , Linhagem , Fosfoproteínas/genética , Estados Unidos , População Branca
10.
Ann Rheum Dis ; 79(3): 379-386, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31767698

RESUMO

OBJECTIVES: Determine global skin transcriptome patterns of early diffuse systemic sclerosis (SSc) and how they differ from later disease. METHODS: Skin biopsy RNA from 48 patients in the Prospective Registry for Early Systemic Sclerosis (PRESS) cohort (mean disease duration 1.3 years) and 33 matched healthy controls was examined by next-generation RNA sequencing. Data were analysed for cell type-specific signatures and compared with similarly obtained data from 55 previously biopsied patients in Genetics versus Environment in Scleroderma Outcomes Study cohort with longer disease duration (mean 7.4 years) and their matched controls. Correlations with histological features and clinical course were also evaluated. RESULTS: SSc patients in PRESS had a high prevalence of M2 (96%) and M1 (94%) macrophage and CD8 T cell (65%), CD4 T cell (60%) and B cell (69%) signatures. Immunohistochemical staining of immune cell markers correlated with the gene expression-based immune cell signatures. The prevalence of immune cell signatures in early diffuse SSc patients was higher than in patients with longer disease duration. In the multivariable model, adaptive immune cell signatures were significantly associated with shorter disease duration, while fibroblast and macrophage cell type signatures were associated with higher modified Rodnan Skin Score (mRSS). Immune cell signatures also correlated with skin thickness progression rate prior to biopsy, but did not predict subsequent mRSS progression. CONCLUSIONS: Skin in early diffuse SSc has prominent innate and adaptive immune cell signatures. As a prominently affected end organ, these signatures reflect the preceding rate of disease progression. These findings could have implications in understanding SSc pathogenesis and clinical trial design.


Assuntos
Imunidade Adaptativa/genética , Imunidade Inata/genética , Esclerodermia Difusa/genética , Esclerodermia Difusa/imunologia , Adulto , Biomarcadores/análise , Biópsia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Estudos Prospectivos , Sistema de Registros , Análise de Regressão , Esclerodermia Difusa/patologia , Análise de Sequência de RNA , Índice de Gravidade de Doença , Pele/imunologia , Pele/patologia , Transcriptoma
11.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 37(2): 156-158, 2020 Feb 10.
Artigo em Zh | MEDLINE | ID: mdl-32034744

RESUMO

OBJECTIVE: To explore the genetic basis for a Chinese neonate with lipoprotein lipase deficiency. METHODS: Targeted capture and next-generation sequencing (NGS) were carried out to detect variants of genes associated with inborn errors of metabolism. Suspected variants were validated by Sanger sequencing. RESULTS: Genetic testing revealed novel complex heterozygous variants, namely c.347G>C (p.Arg116Pro) and c.472T>G (p.Tyr158Asp), of the LPL gene, which were respectively inherited from his father and mother. CONCLUSION: Compound heterozygous variants c.347G>C and c.472T>G of the LPL gene probably underlie the lipoprotein lipase deficiency in this child.


Assuntos
Hiperlipoproteinemia Tipo I , Lipase Lipoproteica/genética , Povo Asiático , Testes Genéticos , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hiperlipoproteinemia Tipo I/genética , Recém-Nascido , Mutação
12.
Plant Mol Biol ; 101(1-2): 113-127, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31300998

RESUMO

Transcriptional regulation is an essential molecular machinery in controlling gene expression in diverse plant developmental processes including fruit ripening. This involves the interaction of transcription factors (TFs) and promoters of target genes. In banana, although a number of fruit ripening-associated TFs have been characterized, their number is relatively small. Here we identified a nuclear-localized basic leucine zipper (bZIP) TF, MabZIP93, associated with banana ripening. MabZIP93 activated cell wall modifying genes MaPL2, MaPE1, MaXTH23 and MaXGT1 by directly binding to their promoters. Transient over-expression of MabZIP93 in banana fruit resulted in the increased expression of MaPL2, MaPE1, MaXTH23 and MaXGT1. Moreover, a mitogen-activated protein kinase MaMPK2 and MabZIP93 were found to interact with MabZIP93. The interaction of MabZIP93 with MaMPK2 enhanced MabZIP93 activation of cell wall modifying genes, which was likely due to the phosphorylation of MabZIP93 mediated by MaMPK2. Overall, this study shows that MaMPK2 interacts with and phosphorylates MabZIP93 to promote MabZIP93-mediated transcriptional activation of cell wall modifying genes, thereby expanding our understanding of gene networks associated with banana fruit ripening.


Assuntos
Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes/genética , Musa/genética , Proteínas de Plantas/metabolismo , Ativação Transcricional , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Frutas/genética , Musa/fisiologia , Fosforilação , Proteínas de Plantas/genética , Regiões Promotoras Genéticas/genética
13.
BMC Med Inform Decis Mak ; 19(Suppl 1): 20, 2019 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-30700303

RESUMO

BACKGROUND: Disease comorbidity is very common and has significant impact on disease treatment. Revealing the associations among diseases may help to understand the mechanisms of diseases, improve the prevention and treatment of diseases, and support the discovery of new drugs or new uses of existing drugs. METHODS: In this paper, we introduced a mathematical model to represent gene related diseases with a series of associated genes based on the overrepresentation of genes and diseases in PubMed literature. We also illustrated an efficient way to reveal the implicit connections between COPD and other diseases based on this model. RESULTS: We applied this approach to analyze the relationships between Chronic Obstructive Pulmonary Disease (COPD) and other diseases under the Lung diseases branch in the Medical subject heading index system and detected 4 novel diseases relevant to COPD. As judged by domain experts, the F score of our approach is up to 77.6%. CONCLUSIONS: The results demonstrate the effectiveness of the gene fingerprint model for diseases on the basis of medical literature.


Assuntos
Comorbidade , Ontologia Genética , Descoberta do Conhecimento , Modelos Teóricos , PubMed , Doença Pulmonar Obstrutiva Crônica , Humanos , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/genética
14.
Proc Natl Acad Sci U S A ; 112(39): 12139-44, 2015 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-26371315

RESUMO

Point centromeres are specified by a short consensus sequence that seeds kinetochore formation, whereas regional centromeres lack a conserved sequence and instead are epigenetically inherited. Regional centromeres are generally flanked by heterochromatin that ensures high levels of cohesin and promotes faithful chromosome segregation. However, it is not known whether regional centromeres require pericentromeric heterochromatin. In the yeast Candida lusitaniae, we identified a distinct type of regional centromere that lacks pericentromeric heterochromatin. Centromere locations were determined by ChIP-sequencing of two key centromere proteins, Cse4 and Mif2, and are consistent with bioinformatic predictions. The centromeric DNA sequence was unique for each chromosome and spanned 4-4.5 kbp, consistent with regional epigenetically inherited centromeres. However, unlike other regional centromeres, there was no evidence of pericentromeric heterochromatin in C. lusitaniae. In particular, flanking genes were expressed at a similar level to the rest of the genome, and a URA3 reporter inserted adjacent to a centromere was not repressed. In addition, regions flanking the centromeric core were not associated with hypoacetylated histones or a sirtuin deacetylase that generates heterochromatin in other yeast. Interestingly, the centromeric chromatin had a distinct pattern of histone modifications, being enriched for methylated H3K79 and H3R2 but lacking methylation of H3K4, which is found at other regional centromeres. Thus, not all regional centromeres require flanking heterochromatin.


Assuntos
Candida/genética , Centrômero/genética , Heterocromatina/genética , Sequência de Bases , Imunoprecipitação da Cromatina , Segregação de Cromossomos/fisiologia , Biologia Computacional , Dados de Sequência Molecular , Plasmídeos/genética , Análise de Sequência de DNA , Especificidade da Espécie
15.
Toxics ; 12(5)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38787143

RESUMO

Recent findings indicate that air pollution contributes to the onset and advancement of chronic obstructive pulmonary disease (COPD). Nevertheless, there is insufficient research indicating that air pollution is linked to COPD in the region of inland northwest China. Daily hospital admission records for COPD, air pollutant levels, and meteorological factor information were collected in Jiuquan for this study between 1 January 2018 and 31 December 2019. We employed a distributed lag non-linear model (DLNM) integrated with the generalized additive model (GAM) to assess the association between air pollution and hospital admissions for COPD with single lag days from lag0 to lag7 and multiday moving average lag days from lag01 to lag07. For example, the pollutant concentration on the current day was lag0, and on the prior 7th day was lag7. The present and previous 7-day moving average pollutant concentration was lag07. Gender, age, and season-specific stratified analyses were also carried out. It is noteworthy that the delayed days exhibited a different pattern, and the magnitude of associations varied. For NO2 and CO, obvious associations with hospitalizations for COPD were found at lag1, lag01-lag07, and lag03-lag07, with the biggest associations at lag05 and lag06 [RR = 1.015 (95%CI: 1.008, 1.023) for NO2, RR = 2.049 (95%CI: 1.416, 2.966) for CO], while only SO2 at lag02 was appreciably linked to hospitalizations for COPD [1.167 (95%CI: 1.009, 1.348)]. In contrast, short-term encounters with PM2.5, PM10, and O3 were found to have no significant effects on COPD morbidity. The lag effects of NO2 and CO were stronger than those of PM2.5 and PM10. Males and those aged 65 years or older were more vulnerable to air pollution. When it came to the seasons, the impacts appeared to be more pronounced in the cold season. In conclusion, short-term encounters with NO2 and CO were significantly correlated with COPD hospitalization in males and the elderly (≥65).

16.
Food Chem ; 455: 139740, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38843715

RESUMO

Monascus species are functional fermentation fungi with great potential for selenium (Se) supplementation. This study investigated the effects of Se bio-fortification on the growth, morphology, and biosynthesis of Monascus ruber M7. The results demonstrated a significant increase in the yield of orange and red Monascus pigments (MPs) in red yeast rice (RYR) by 38.52% and 36.57%, respectively, under 20 µg/mL of selenite pressure. Meanwhile, the production of citrinin (CIT), a mycotoxin, decreased from 244.47 µg/g to 175.01 µg/g. Transcriptome analysis revealed significant upregulation of twelve genes involved in MPs biosynthesis, specifically MpigE, MpigF, and MpigN, and downregulation of four genes (mrr3, mrr4, mrr7, and mrr8) associated with CIT biosynthesis. Additionally, three genes encoding cysteine synthase cysK (Log2FC = 1.6), methionine synthase metH (Log2FC = 2.2), and methionyl-tRNA synthetase metG (Log2FC = 1.8) in selenocompound metabolism showed significantly upregulated. These findings provide insights into Se biotransformation and metabolism in filamentous fungi.


Assuntos
Biofortificação , Citrinina , Monascus , Ácido Selenioso , Selênio , Monascus/metabolismo , Monascus/genética , Monascus/crescimento & desenvolvimento , Selênio/metabolismo , Ácido Selenioso/metabolismo , Citrinina/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Pigmentos Biológicos/metabolismo , Fermentação , Produtos Biológicos
17.
Adv Sci (Weinh) ; 11(26): e2310292, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38704674

RESUMO

The regenerative treatment of infectious vertical bone defects remains difficult and challenging today. Current clinical treatments are limited in their ability to control bacteria and infection, which is unfavorable for new bone formation and calls for a new type of material with excellent osteogenic and antibacterial properties. Here a multifunctional scaffold is synthesized that mimics natural bone nanostructures by incorporating silver nanowires into a hierarchical, intrafibrillar mineralized collagen matrix (IMC/AgNWs), to achieve the therapeutic goals of inhibiting bacterial activity and promoting infectious alveolar bone augmentation in rats and beagle dogs. An appropriate concentration of 0.5 mg mL-1 AgNWs is selected to balance biocompatibility and antibacterial properties. The achieved IMC/AgNWs exhibit a broad spectrum of antimicrobial properties against Gram-negative Porphyromonas gingivalis and Gram-positive Streptococcus mutans. When the IMC/AgNWs are cocultured with periodontal ligament stem cells, it possesses excellent osteoinductive activities under both non-inflammatory and inflammatory conditions. By constructing a rat mandibular infected periodontal defect model, the IMC/AgNWs achieve a near-complete healing through the canonical BMP/Smad signaling. Moreover, the IMC/AgNWs enhance vertical bone height and osseointegration in peri-implantitis in beagle dogs, indicating the clinical translational potential of IMC/AgNWs for infectious vertical bone augmentation.


Assuntos
Alicerces Teciduais , Animais , Cães , Ratos , Alicerces Teciduais/química , Modelos Animais de Doenças , Porphyromonas gingivalis/efeitos dos fármacos , Regeneração Óssea/efeitos dos fármacos , Ratos Sprague-Dawley , Streptococcus mutans/efeitos dos fármacos , Masculino , Osteogênese/efeitos dos fármacos , Antibacterianos/farmacologia , Biomimética/métodos
18.
Int J Oral Sci ; 16(1): 3, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38221531

RESUMO

Pyroptosis, an inflammatory caspase-dependent programmed cell death, plays a vital role in maintaining tissue homeostasis and activating inflammatory responses. Orthodontic tooth movement (OTM) is an aseptic force-induced inflammatory bone remodeling process mediated by the activation of periodontal ligament (PDL) progenitor cells. However, whether and how force induces PDL progenitor cell pyroptosis, thereby influencing OTM and alveolar bone remodeling remains unknown. In this study, we found that mechanical force induced the expression of pyroptosis-related markers in rat OTM and alveolar bone remodeling process. Blocking or enhancing pyroptosis level could suppress or promote OTM and alveolar bone remodeling respectively. Using Caspase-1-/- mice, we further demonstrated that the functional role of the force-induced pyroptosis in PDL progenitor cells depended on Caspase-1. Moreover, mechanical force could also induce pyroptosis in human ex-vivo force-treated PDL progenitor cells and in compressive force-loaded PDL progenitor cells in vitro, which influenced osteoclastogenesis. Mechanistically, transient receptor potential subfamily V member 4 signaling was involved in force-induced Caspase-1-dependent pyroptosis in PDL progenitor cells. Overall, this study suggested a novel mechanism contributing to the modulation of osteoclastogenesis and alveolar bone remodeling under mechanical stimuli, indicating a promising approach to accelerate OTM by targeting Caspase-1.


Assuntos
Piroptose , Técnicas de Movimentação Dentária , Animais , Humanos , Camundongos , Ratos , Remodelação Óssea/fisiologia , Caspase 1 , Ligamento Periodontal
20.
J Colloid Interface Sci ; 637: 317-325, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36706727

RESUMO

HYPOTHESIS: Improving the processing efficiency of aerosol-coating technologies during mass production requires optimal nozzle spacing to allow complete surface coverage while at the same time not over-using the coating fluid. The difficult challenge is to estimate quantitatively the substrate coverage of fine droplets. Bouncing, splashing, and imbibition of droplets on solid surfaces have been widely explored, but little attention has been paid to liquid imbibition into woven textiles. EXPERIMENTS: Here, we experimentally and theoretically study the imbibition dynamics of aqueous droplets on woven cloths. The experimental process was observed using magnified visual observation. A proposed continuum mathematical model well predicts the aqueous imbibition fronts as a function of time. FINDINGS: A captivating four-petal imbibition spreading pattern is observed at enhanced magnification. The imbibition occurs separately in the megapores of the cloth between yarns, and in smaller minipores within individual yarn bundles. Surprisingly, weave intersections do not allow cross imbibition accentuating an anisotropic imbibition pattern. The proposed model achieves quantitative agreement with experiment. This is the first time that the mechanisms of four-petal droplet deposition, spreading, and imbibition into woven cloth have been outlined and successfully simulated. The mathematical model predicts advancement of liquids in anisotropic woven cloth, and permits evaluation of the coverages of droplet spreading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA