Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(7): 3755-3762, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346446

RESUMO

Picolinamide fungicides, structurally related to UK-2A and antimycin-A, bind into the Qi-site in the bc1 complex. However, the detailed binding mode of picolinamide fungicides remains unknown. In the present study, antimycin-A and UK-2A were selected to study the binding mode of picolinamide inhibitors with four protonation states in the Qi-site by integrating molecular dynamics simulation, molecular docking, and molecular mechanics Generalized Born surface area (MM/GBSA) calculations. Subsequently, a series of new picolinamide derivatives were designed and synthesized to further understand the effects of substituents on the tail phenyl ring. The computational results indicated that the substituted aromatic rings in antimycin-A and UK-2A were the pharmacophore fragments and made the primary contribution when bound to a protein. Compound 9g-hydrolysis formed H-bonds with Hie201 and Ash228 and showed an IC50 value of 6.05 ± 0.24 µM against the porcine bc1 complex. Compound 9c, with a simpler chemical structure, showed higher control effects than florylpicoxamid against cucumber downy mildew and expanded the fungicidal spectrum of picolinamide fungicides. The structural and mechanistic insights obtained from the present study will provide a valuable clue for the future designing of new promising Qi-site inhibitors.


Assuntos
Antimicina A/análogos & derivados , Fungicidas Industriais , Ácidos Picolínicos , Animais , Suínos , Fungicidas Industriais/farmacologia , Simulação de Acoplamento Molecular , Citocromos , Complexo III da Cadeia de Transporte de Elétrons , Lactonas , Piridinas
2.
J Agric Food Chem ; 72(31): 17649-17657, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39047266

RESUMO

Oxathiapiprolin (OXA), which targets the oxysterol-binding protein (OSBP), is an outstanding piperidinyl thiazole isoxazoline (PTI) fungicide that can be used to control oomycetes diseases. In this study, starting from the structure of OXA, a series of novel OSBP inhibitors were designed and synthesized by introducing an indole moiety to replace the pyrazole in OXA. Finally, compound b24 was found to exhibit the highest control effect (82%) against cucumber downy mildew (CDM) in the greenhouse at a very low dosage of 0.069 mg/L, which was comparable to that of OXA (88%). Furthermore, it showed better activity against potato late blight (PLB) than other derivatives of indole. The computational results showed that the R-conformation of b24 should be the dominant conformation binding to PcOSBP. The results of the present work indicate that the 3-fluorine-indole ring is a favorable fragment to increasing the electronic energy when binding with PcOSBP. Furthermore, compound b24 could be used as a lead compound for the discovery of new OSBP inhibitors.


Assuntos
Fungicidas Industriais , Doenças das Plantas , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Doenças das Plantas/microbiologia , Relação Estrutura-Atividade , Indóis/química , Indóis/farmacologia , Cucumis sativus/química , Cucumis sativus/microbiologia , Oomicetos/efeitos dos fármacos , Solanum tuberosum/química , Estrutura Molecular , Simulação de Acoplamento Molecular , Descoberta de Drogas , Hidrocarbonetos Fluorados , Pirazóis
3.
CNS Neurosci Ther ; 30(4): e14696, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38668740

RESUMO

AIMS: Excessive neuroinflammation mediated mainly by microglia plays a crucial role in ischemic stroke. AZD1390, an ataxia telangiectasia mutated (ATM) specific inhibitor, has been shown to promote radio-sensitization and survival in central nervous system malignancies, while the role of AZD1390 in ischemic stroke remains unknown. METHODS: Real-time PCR, western blot, immunofluorescence staining, flow cytometry and enzyme-linked immunosorbent assays were used to assess the activation of microglia and the release of inflammatory cytokines. Behavioral tests were performed to measure neurological deficits. 2,3,5-Triphenyltetrazolium chloride staining was conducted to assess the infarct volume. The activation of NF-κB signaling pathway was explored through immunofluorescence staining, western blot, co-immunoprecipitation and proximity ligation assay. RESULTS: The level of pro-inflammation cytokines and activation of NF-κB signaling pathway was suppressed by AZD1390 in vitro and in vivo. The behavior deficits and infarct size were partially restored with AZD1390 treatment in experimental stroke. AZD1390 restrict ubiquitylation and sumoylation of the essential regulatory subunit of NF-κB (NEMO) in an ATM-dependent and ATM-independent way respectively, which reduced the activation of the NF-κB pathway. CONCLUSION: AZD1390 suppressed NF-κB signaling pathway to alleviate ischemic brain injury in experimental stroke, and attenuated microglia activation and neuroinflammation, which indicated that AZD1390 might be an attractive agent for the treatment of ischemic stroke.


Assuntos
Microglia , Doenças Neuroinflamatórias , Piridinas , Quinolonas , Animais , Microglia/efeitos dos fármacos , Microglia/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Citocinas/metabolismo , Transdução de Sinais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA