Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 35(9): 3544-3565, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37306489

RESUMO

Self-incompatibility (SI) is a widespread genetically determined system in flowering plants that prevents self-fertilization to promote gene flow and limit inbreeding. S-RNase-based SI is characterized by the arrest of pollen tube growth through the pistil. Arrested pollen tubes show disrupted polarized growth and swollen tips, but the underlying molecular mechanism is largely unknown. Here, we demonstrate that the swelling at the tips of incompatible pollen tubes in pear (Pyrus bretschneideri [Pbr]) is mediated by the SI-induced acetylation of the soluble inorganic pyrophosphatase (PPA) PbrPPA5. Acetylation at Lys-42 of PbrPPA5 by the acetyltransferase GCN5-related N-acetyltransferase 1 (GNAT1) drives accumulation of PbrPPA5 in the nucleus, where it binds to the transcription factor PbrbZIP77, forming a transcriptional repression complex that inhibits the expression of the pectin methylesterase (PME) gene PbrPME44. The function of PbrPPA5 as a transcriptional repressor does not require its PPA activity. Downregulating PbrPME44 resulted in increased levels of methyl-esterified pectins in growing pollen tubes, leading to swelling at their tips. These observations suggest a mechanism for PbrPPA5-driven swelling at the tips of pollen tubes during the SI response. The targets of PbrPPA5 include genes encoding cell wall-modifying enzymes, which are essential for building a continuous sustainable mechanical structure for pollen tube growth.


Assuntos
Tubo Polínico , Pyrus , Ribonucleases/metabolismo , Pirofosfatase Inorgânica/genética , Pirofosfatase Inorgânica/metabolismo , Acetilação , Pyrus/metabolismo
2.
Development ; 149(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35833708

RESUMO

Eye size is a key parameter of visual function, but the precise mechanisms of eye size control remain poorly understood. Here, we discovered that the lipogenic transcription factor sterol regulatory element-binding protein 2 (SREBP2) has an unanticipated function in the retinal pigment epithelium (RPE) to promote eye size in postnatal mice. SREBP2 transcriptionally represses low density lipoprotein receptor-related protein 2 (Lrp2), which has been shown to restrict eye overgrowth. Bone morphogenetic protein 2 (BMP2) is the downstream effector of Srebp2 and Lrp2, and Bmp2 is suppressed by SREBP2 transcriptionally but activated by Lrp2. During postnatal development, SREBP2 protein expression in the RPE decreases whereas that of Lrp2 and Bmp2 increases as the eye growth rate reduces. Bmp2 is the key determinant of eye size such that its level in mouse RPE inversely correlates with eye size. Notably, RPE-specific Bmp2 overexpression by adeno-associated virus effectively prevents the phenotypes caused by Lrp2 knock out. Together, our study shows that rapid postnatal eye size increase is governed by an RPE-derived signaling pathway, which consists of both positive and negative regulators of eye growth.


Assuntos
Proteína Morfogenética Óssea 2 , Proteína de Ligação a Elemento Regulador de Esterol 2 , Animais , Proteína Morfogenética Óssea 2/genética , Proteína Morfogenética Óssea 2/metabolismo , Regulação da Expressão Gênica , Proteína-2 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Epitélio Pigmentado da Retina/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo
3.
Mol Breed ; 44(3): 18, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38390031

RESUMO

Cold shock domain proteins (CSPs), initially identified in Escherichia coli, have been demonstrated to play a positive role in cold resistance. Previous studies in wheat, rice, and Arabidopsis have indicated the functional conservation of CSPs in cold resistance between bacteria and higher plants. However, the biological functions of PbrCSPs in pear pollen tubes, which represent the fragile reproductive organs highly sensitive to low temperature, remain largely unknown. In this study, a total of 22 CSPs were identified in the seven Rosaceae species, with a focus on characterizing four PbrCSPs in pear (Pyrus bretschneideri Rehder). All four PbrCSPs were structurally conserved and responsive to the abiotic stresses, such as cold, high osmotic, and abscisic acid (ABA) treatments. PbrCSP1, which is specifically expressed in pear pollen tubes, was selected for further research. PbrCSP1 was localized in both the cytoplasm and nucleus. Suppressing the expression of PbrCSP1 significantly inhibited the pollen tube growth in vitro. Conversely, overexpression of PbrCSP1 promoted the growth of pear pollen tubes under the normal condition and, notably, under the cold environment at 4 °C. These findings highlight an essential role of PbrCSP1 in facilitating the normal growth and enhancing cold resistance in pear pollen tubes. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01457-w.

4.
BMC Genomics ; 24(1): 49, 2023 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-36707756

RESUMO

BACKGROUND: The circadian clock integrates endogenous and exogenous signals and regulates various physiological processes in plants. REVEILLE (RVE) proteins play critical roles in circadian clock system, especially CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) and LHY (LATE ELONGATED HYPOCOTYL), which also participate in flowering regulation. However, little is known about the evolution and function of the RVE family in Rosaceae species, especially in Pyrus bretschneideri. RESULTS: In this study, we performed a genome-wide analysis and identified 51 RVE genes in seven Rosaceae species. The RVE family members were classified into two groups based on phylogenetic analysis. Dispersed duplication events and purifying selection were the main drivers of evolution in the RVE family. Moreover, the expression patterns of ten PbRVE genes were diverse in P. bretschneideri tissues. All PbRVE genes showed diurnal rhythms under light/dark cycles in P. bretschneideri leaves. Four PbRVE genes also displayed robust rhythms under constant light conditions. PbLHY, the gene with the highest homology to AtCCA1 and AtLHY in P. bretschneideri, is localized in the nucleus. Ectopic overexpression of PbLHY in Arabidopsis delayed flowering time and repressed the expression of flowering time-related genes. CONCLUSION: These results contribute to improving the understanding and functional research of RVE genes in P. bretschneideri.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Rosaceae , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Rosaceae/genética , Filogenia , Arabidopsis/metabolismo , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas
5.
Nat Methods ; 17(7): 685-688, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32572232

RESUMO

We have developed CRISPR-assisted RNA-protein interaction detection method (CARPID), which leverages CRISPR-CasRx-based RNA targeting and proximity labeling to identify binding proteins of specific long non-coding RNAs (lncRNAs) in the native cellular context. We applied CARPID to the nuclear lncRNA XIST, and it captured a list of known interacting proteins and multiple previously uncharacterized binding proteins. We generalized CARPID to explore binders of the lncRNAs DANCR and MALAT1, revealing the method's wide applicability in identifying RNA-binding proteins.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Humanos , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fatores de Transcrição/metabolismo
6.
Planta ; 257(4): 68, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36853424

RESUMO

MAIN CONCLUSION: The phylogenetic relationship and evolutionary history of the GAUT gene family were identified in 8 Rosaseae species. PbrGAUT22 was involved in controlling pollen tube growth by regulating the content of pectins. In plants, galacturonosyltransferases (GAUTs) were involved in homogalacturonan biosynthesis and functioned in maintaining pollen tube cell wall integrity. However, the feature and evolutionary history of the GAUT gene family in Rosaceae species and candidates in pear pollen tube growth remain unclear. Here, we identified 190 GAUT genes in 8 Rosaceae species, including Chinese white pear (Pyrus bretschneideri), European pear (Pyrus communis), apple (Malus × domestica), peach (Prunus persica), Japanese apricot (Prunus mume), sweet cherry (Prunus avium), woodland strawberry (Fragaria vesca) and black raspberry (Rubus occidentalis). Members in GAUT gene family were divided into 4 subfamilies according to the phylogenetic and structural analysis. Whole-genome duplication events and dispersed duplicates drove the expansion of the GAUT gene family. Among 23 pollen-expressed PbrGAUT genes in pear, PbrGAUT22 showed increased expression level during 1-6 h post-cultured pollen tubes. PbrGAUT22 was localized to the cytoplasm and plasma membrane. Knockdown of PbrGAUT22 expression in pollen tubes caused the decrease of pectin content and inhibited pear pollen tubes growth. Taken together, we investigated the identification and evolution of the GAUT gene family in Rosaceae species, and found that PbrGAUT22 played an essential role in the synthesis of pectin and the growth of pear pollen tubes.


Assuntos
Fragaria , Malus , Prunus persica , Pyrus , Rosaceae , Rosaceae/genética , Pyrus/genética , Tubo Polínico/genética , Filogenia , Proliferação de Células
7.
Opt Express ; 31(23): 38939-38948, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017984

RESUMO

Random numbers are of critical importance in many applications, including secure communication, photonics computing and cryptography. Due to the non-deterministic nature of the quantum processes, a degenerate optical parametric oscillator (DOPO) constitutes a solution to produce true randomness. Nevertheless, one of the existing challenges for DOPO in this field is bit sequence scalability. Here, we experimentally report on the generation of 5-bit random number streams in a time-multiplexed femtosecond DOPO system. A multi-pass cell is added to elongate the OPO cavity to scale up the bit sequences. To this end, for a ∼15 m long all free space OPO cavity, resonating 5 signal pulses with a repetition rate of 50 MHz is demonstrated. The above-threshold binary phase nature originates from vacuum fluctuations of a DOPO ensuring the randomness of the system. The phase state of the output is characterized by the interference pattern between the output pulses and the fundamental pump pulses. Different bit sequences are presented here by turning on and off the OPO. Conditional probability is performed to verify the randomness of the output for 1200 bits. Our scheme provides a new direction for an all-optical random number generator.

8.
J Fluoresc ; 33(3): 1147-1156, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36598660

RESUMO

Carbon dots has becoming one of the most promising fluorescence sensors to determine the trace level of heavy metals in environments because of their advantages in optical properties, response time, and convenient operation procedures. Herein, a novel nitrogen and sulfur co-doped carbon dots (NS-CDs) were prepared though microwave assisted approach using DL-malic acid and allyl thiourea for the first time. Due to the existence of nitrogen and sulfur, the as-prepared NS-CDs exhibited bright blue fluorescence at 430 nm upon 330 nm excitation, with a fluorescence quantum yield of 19.8%. The sensitivity study of NS-CDs against metal ions and organic molecules has approved that the fluorescence could be further quenched by Ce4+ and Fe3+ ions, with the same linear detection ranges varying from 10 to 90 µM. The limits of detection (LOD) were determined as low as 0.75 µM and 0.67 µM for Ce4+ and Fe3+ ions, respectively. The possible quenching mechanism is explained by inner filter effect and static quenching mechanism for Ce4+ ions, while the quenching effect caused by Fe3+ ions is attributed to the inner filter effect, static and dynamic quenching mechanisms. Additionally, the developed sensor was used for the detection of Ce4+ and Fe3+ ions in tap water with satisfactory recoveries. Finally, the designed NS-CDs sensor possesses good biocompatibility against MA104 cells, suggesting the sensor can be potentially applied to detect Ce4+ and Fe3+ ions in environment and biological systems.

9.
J Biol Chem ; 296: 100374, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33548228

RESUMO

The recent discovery of the cancer-associated E76K mutation in histone H2B (H2BE76-to-K) in several types of cancers revealed a new class of oncohistone. H2BE76K weakens the stability of histone octamers, alters gene expression, and promotes colony formation. However, the mechanism linking the H2BE76K mutation to cancer development remains largely unknown. In this study, we knock in the H2BE76K mutation in MDA-MB-231 breast cancer cells using CRISPR/Cas9 and show that the E76K mutant histone H2B preferentially localizes to genic regions. Interestingly, genes upregulated in the H2BE76K mutant cells are enriched for the E76K mutant H2B and are involved in cell adhesion and proliferation pathways. We focused on one H2BE76K target gene, ADAM19 (a disintegrin and metalloproteinase-domain-containing protein 19), a gene highly expressed in various human cancers including breast invasive carcinoma, and demonstrate that H2BE76K directly promotes ADAM19 transcription by facilitating efficient transcription along the gene body. ADAM19 depletion reduced the colony formation ability of the H2BE76K mutant cells, whereas wild-type MDA-MB-231 cells overexpressing ADAM19 mimics the colony formation phenotype of the H2BE76K mutant cells. Collectively, our data demonstrate the mechanism by which H2BE76K deregulates the expression of genes that control oncogenic properties through a combined effect of its specific genomic localization and nucleosome destabilization effect.


Assuntos
Proteínas ADAM/genética , Neoplasias da Mama/genética , Histonas/genética , Proteínas ADAM/metabolismo , Neoplasias da Mama/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Histonas/metabolismo , Humanos , Mutação/genética , Nucleossomos , Oncogenes/genética , Polimorfismo de Nucleotídeo Único/genética
10.
Physiol Plant ; 174(3): e13700, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35526262

RESUMO

Cellulose, a key component of the cell wall, plays an important role in maintaining the growth of pollen tubes. However, the molecular mechanism of cellulose participating in the cessation of pear pollen tube growth remains unclear. Here, we reported that at 15 h post-cultured (HPC), the slow-growth pear pollen tubes showed thickened cell walls and cellulose accumulation in the inner wall. Transcriptome data and quantitative real-time PCR analysis showed that PbrCSLD5, a cellulose synthesis-like gene, was highly expressed in the 15 HPC pear pollen tubes. Knockdown of PbrCSLD5 caused a decrease in cellulose content in pear pollen tubes. Moreover, PbrCSLD5 overexpression in Arabidopsis resulted in the accumulation of cellulose and disruption of normal pollen tube growth. Transcription factor PbrMADS52 was found to bind to the promoter of PbrCSLD5 and enhanced its expression. Our results suggested that the PbrMADS52-PbrCSLD5 signaling pathway led to increased cellulose content in the pear pollen tube cell wall, thereby inhibiting pollen tube growth. These results provided new insights into the regulation of pollen tube growth.


Assuntos
Arabidopsis , Proteínas de Plantas/metabolismo , Pyrus , Arabidopsis/metabolismo , Celulose/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Tubo Polínico/genética , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo
11.
Planta ; 253(6): 118, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-33961146

RESUMO

MAIN CONCLUSION: Pectin methylesterase inhibitor gene family in the seven Rosaceae species (including three pear cultivars) is characterized and three pectin methylesterase inhibitor genes are identified to regulate pollen tube growth in pear. Pectin methylesterase inhibitor (PMEI) participates in a variety of biological processes in plants. However, the information and function of PMEI genes in Rosaceae are largely unknown. In this study, a total of 423 PMEI genes are identified in the genomes of seven Rosaceae species. The PMEI genes in pear are categorized into five subfamilies based on structural analysis and evolutionary analysis. WGD and TD are the main duplication events in the PMEI gene family of pear. Quantitative real-time PCR analysis indicates that PbrPMEI23, PbrPMEI39, and PbrPMEI41 are increasingly expressed during pear pollen tube growth. Under the treatment of recombinant proteins PbrPMEI23, PbrPMEI39 or PbrPMEI41, the content of methylesterified pectin at the region 5-20 µm from the pollen tube tip significantly increases, and the growth of pear pollen tubes is promoted. These results indicate that PMEI regulates the growth of pollen tubes by changing the distribution of methylesterified pectin in the apex.


Assuntos
Pyrus , Rosaceae , Hidrolases de Éster Carboxílico/genética , Pectinas , Proteínas de Plantas/genética , Tubo Polínico/genética , Pyrus/genética , Rosaceae/genética
12.
Genomics ; 112(3): 2467-2477, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32014523

RESUMO

Pectin methyl-esterases (PMEs) play crucial roles in plant growth. In this study, we identified 81 PbrPMEs in pear. Whole-genome duplication and purifying selection drove the evolution of PbrPME gene family. The expression of 47 PbrPMEs was detected in pear pollen tube, which were assigned to 13 clusters by an expression tendency analysis. One of the 13 clusters presented opposite expression trends towards the changes of methyl-esterified pectins at the apical cell wall. PbrPMEs were localized in the cytoplasm and plasma membrane. Repression of PbrPME11, PbrPME44, and PbrPME59 resulted in the inhibition of pear pollen tube growth and abnormal deposition of methyl-esterified pectins at pollen tube tip. Pharmacological analysis confirmed that reduced PbrPME activities repressed the pollen tube growth. Overall, we have explored the evolutionary characteristics of PbrPME gene family and found the key PbrPME genes that control the growth of pollen tube, which deepened the understanding of pear fertility regulation.


Assuntos
Esterases/genética , Pectinas/metabolismo , Tubo Polínico/enzimologia , Tubo Polínico/crescimento & desenvolvimento , Pyrus/enzimologia , Pyrus/crescimento & desenvolvimento , Mapeamento Cromossômico , Esterases/classificação , Esterases/metabolismo , Genes de Plantas , Genoma de Planta , Família Multigênica , Motivos de Nucleotídeos , Filogenia , Tubo Polínico/metabolismo , Pyrus/genética , Pyrus/metabolismo , Sintenia
13.
Environ Monit Assess ; 192(8): 496, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32643033

RESUMO

Ground-level ozone is the primary source of air pollution in China, particularly during the warmer months. In this study, we investigated the exposure status of ozone pollution and the temperature distribution in an air-conditioned bus in Jinan during the evening peak period based on field measurements obtained with a handheld portable particle counter and indigo disulfonate spectrophotometry. Statistical analysis showed that the passengers experienced poor air quality within the confines of the bus due to the poor air quality outside. Furthermore, the level of passenger comfort was dissatisfactory because of the high temperature, thereby highlighting the urgent need to improve the current situation. Numerical simulations were conducted using FLUENT software to explore the impacts of the air supply angle, the opening and closing of the bus door, and the chemical reaction between ozone and its precursors on the diffusion and distribution of ozone, the temperature, and the airflow field. The results indicated that high concentrations of ozone were present in the middle and front regions of the bus. Pollution can be reduced by keeping the bus door open for no longer than 20 s when waiting for other passengers, and the best optimization effect in relation to the temperature and passenger comfort was determined as an air supply angle of 30°. In addition, the average individual daily intake of ozone was combined with other relevant parameters to assess the exposure level. It is recommended that the elderly and children should avoid peak time travel to reduce their exposure to ozone (inhalation dose values > 60 µg/m3 and > 56 µg/m3 according to simulations, respectively). These findings are expected to effectively improve the air quality and passenger comfort levels in busses, thereby protecting the health of passengers and reducing carbon usage.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Ozônio/análise , Idoso , Ar Condicionado , Criança , China , Monitoramento Ambiental , Humanos , Veículos Automotores
15.
Environ Monit Assess ; 190(9): 527, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30116899

RESUMO

The original version of this article unfortunately contained an error in the affiliation section and an error of the email address of corresponding author.

16.
Environ Monit Assess ; 190(5): 276, 2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651634

RESUMO

In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter < 10 µm (PM10), which were verified by experimental results. The results revealed poor air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM10 to 150 µg/m3. Changing the air supply angle could further improve the airflow and reduce the concentration of PM10. With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM10 was reduced to 130 µg/m3.


Assuntos
Ar Condicionado/estatística & dados numéricos , Poluição do Ar em Ambientes Fechados/análise , Poluição do Ar/estatística & dados numéricos , Veículos Automotores/estatística & dados numéricos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , Monitoramento Ambiental , Humanos , Material Particulado/análise , Temperatura , Ventilação
17.
Zhongguo Zhong Yao Za Zhi ; 41(22): 4165-4168, 2016 Nov.
Artigo em Zh | MEDLINE | ID: mdl-28933083

RESUMO

This study aimed to provide guidance for the heterogenous gene expression, gene prediction and species evolution by analyzing codon usage bias of Catharanthus roseus.The codon composition and usage bias of 30 437 high-confidence coding sequences from C.roseus were analyzed and the proportion of rare codons of Escherichia coli and Saccharomyces cerevisiae in 25 genes involved in the biosynthesis of terpenoid indole alkaloids (TIAs) in C.roseus were calculated.The results showed that the average GC content of the genes was 42.47%; the average GC content of the third bases in codon was 35.89%.The relative synonymous codon usage (RSCU) of 28 codons were greater than 1 and 26 of them ended with A or T.The above 25 genes involved in TIA biosynthesis contained much more rare condons of E.coli than that of S.cerevisiae.It was concluded that C.roseus mainly prefered the codons ending with A or T and the rule of codon usage was more different to E.coli than S.cerevisiae.Thus, S.cerevisiae may be more suitable host for heterologous expression of these genes.


Assuntos
Catharanthus/genética , Códon , Composição de Bases , Escherichia coli/genética , Plantas Medicinais/genética , Saccharomyces cerevisiae/genética
18.
Zhongguo Zhong Yao Za Zhi ; 41(22): 4129-4137, 2016 Nov.
Artigo em Zh | MEDLINE | ID: mdl-28933078

RESUMO

Catharanthus roseus can produce a variety of terpenoid indole alkaloids (TIA), most of which exhibit strong pharmacological activities. Hence, biosynthesis and regulation of TIA have received recent attention. 3α (S)-strictosidine is an important node in TIA biosynthesis, which is a condensation product of secologanin and tryptamine. The former is produced in iridoid pathway, and the latter is produced in indole pathway. Vindoline and catharanthine, which are produced respectively by 3α (S)-strictosidine via multi-step enzymatic reaction, can form α-3, 4-anhydrovinblastine by the condensation reaction. Then, vinblastine and vincristine are generated from α-3, 4-anhydrovinblastine. Many transcription factors are involved in the regulation of TIA synthesis, such as AP2/ERF and WRKY. Illumination of biosynthetic pathway has laid a foundation for the study of synthetic biology. Today, 3α (S)-strictosidine and vindoline have been synthesized in heterologous hosts Saccharomyces cerevisiae.Research about synthetic biology and the regulation mechanisms will provide a guidance for the production and development of TIA drugs in C. roseus.


Assuntos
Vias Biossintéticas , Catharanthus/metabolismo , Alcaloides de Triptamina e Secologanina/metabolismo , Fatores de Transcrição/metabolismo
19.
Yao Xue Xue Bao ; 49(9): 1340-5, 2014 Sep.
Artigo em Zh | MEDLINE | ID: mdl-25518336

RESUMO

Codon usage bias is an important characteristic of genetic information transfer in organisms. Analysis of codon usage bias of different species is important for understanding the rules on genetic information transfer. The previous method for analysis of codon usage bias is mainly based on genomic data. However, this method is greatly limited, because the genome sequences of higher organisms are still not available up to now. In this study, we found that we could obtain the same optimal codons of Ganoderma lucidum (Curtis: Fr.) P. Karst based on its whole genomic data or large-scale transcriptomic data from its liquid-cultured hyphae, primordium and fruiting body, separately. This result indicated the feasibility to understand the codon usage bias based on the large-scale transcriptomic data. By calculating the proportion of rare codons of Escherichia coli and Saccharomyces cerevisiae in 26 terpene synthases (TS) of G. lucidum, we found that the rare codons of S. cerevisiae have a higher proportion in TS genes, while the rare codons of E. coli have relatively lower, suggesting that the TS genes of G. lucidum are possibly more difficult to be expressed in S. cerevisiae than in E. coli. Chemical synthesis of TS genes according to the yeast optimal codons will be an effective way to solve the problem on the mismatch of gene codon bias between the foreign genes and the host strain.


Assuntos
Códon , Reishi/genética , Escherichia coli , Genoma Fúngico , Saccharomyces cerevisiae , Transcriptoma
20.
DNA Repair (Amst) ; 141: 103713, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38959715

RESUMO

Eukaryotic DNA replication is a tightly controlled process that occurs in two main steps, i.e., licensing and firing, which take place in the G1 and S phases of the cell cycle, respectively. In Saccharomyces cerevisiae, the budding yeast, replication origins contain consensus sequences that are recognized and bound by the licensing factor Orc1-6, which then recruits the replicative Mcm2-7 helicase. By contrast, mammalian initiation sites lack such consensus sequences, and the mammalian ORC does not exhibit sequence specificity. Studies performed over the past decades have identified replication initiation sites in the mammalian genome using sequencing-based assays, raising the question of whether replication initiation occurs at confined sites or in broad zones across the genome. Although recent reports have shown that the licensed MCMs in mammalian cells are broadly distributed, suggesting that ORC-dependent licensing may not determine the initiation sites/zones, they are predominantly located upstream of actively transcribed genes. This review compares the mechanism of replication initiation in yeast and mammalian cells, summarizes the sequencing-based technologies used for the identification of initiation sites/zones, and proposes a possible mechanism of initiation-site/zone selection in mammalian cells. Future directions and challenges in this field are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA