Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Genomics ; 24(1): 494, 2023 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-37641045

RESUMO

BACKGROUND: Soybean is one of the most important oil crops in the world. The domestication of wild soybean has resulted in significant changes in the seed oil content and seed size of cultivated soybeans. To better understand the molecular mechanisms of seed formation and oil content accumulation, WDD01514 (E1), ZYD00463 (E2), and two extreme progenies (E23 and E171) derived from RILs were used for weighted gene coexpression network analysis (WGCNA) combined with transcriptome analysis. RESULTS: In this study, both seed weight and oil content in E1 and E171 were significantly higher than those in E2 and E23, and 20 DAF and 30 DAF may be key stages of soybean seed oil content accumulation and weight increase. Pathways such as "Photosynthesis", "Carbon metabolism", and "Fatty acid metabolism", were involved in oil content accumulation and grain formation between wild and cultivated soybeans at 20 and 30 DAF according to RNA-seq analysis. A total of 121 oil content accumulation and 189 seed formation candidate genes were screened from differentially expressed genes. WGCNA identified six modules related to seed oil content and seed weight, and 76 candidate genes were screened from modules and network. Among them, 16 genes were used for qRT-PCR and tissue specific expression pattern analysis, and their expression-levels in 33-wild and 23-cultivated soybean varieties were subjected to correlation analysis; some key genes were verified as likely to be involved in oil content accumulation and grain formation. CONCLUSIONS: Overall, these results contribute to an understanding of seed lipid metabolism and seed size during seed development, and identify potential functional genes for improving soybean yield and seed oil quantity.


Assuntos
Fabaceae , Glycine max , Glycine max/genética , Sementes/genética , Perfilação da Expressão Gênica , Grão Comestível , Óleos de Plantas
2.
Am J Hum Genet ; 104(4): 625-637, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30879639

RESUMO

Fabry disease is an X-linked lysosomal storage disease caused by loss of alpha galactosidase A (α-Gal A) activity and is characterized by progressive accumulation of globotriaosylceramide and its analogs in all cells and tissues. Although enzyme replacement therapy (ERT) is considered standard of care, the long-term effects of ERT on renal and cardiac manifestations remain uncertain and thus novel therapies are desirable. We herein report preclinical studies evaluating systemic messenger RNA (mRNA) encoding human α-Gal A in wild-type (WT) mice, α-Gal A-deficient mice, and WT non-human primates (NHPs). The pharmacokinetics and distribution of h-α-Gal A mRNA encoded protein in WT mice demonstrated prolonged half-lives of α-Gal A in tissues and plasma. Single intravenous administration of h-α-Gal A mRNA to Gla-deficient mice showed dose-dependent protein activity and substrate reduction. Moreover, long duration (up to 6 weeks) of substrate reductions in tissues and plasma were observed after a single injection. Furthermore, repeat i.v. administration of h-α-Gal A mRNA showed a sustained pharmacodynamic response and efficacy in Fabry mice model. Lastly, multiple administrations to non-human primates confirmed safety and translatability. Taken together, these studies across species demonstrate preclinical proof-of-concept of systemic mRNA therapy for the treatment of Fabry disease and this approach may be useful for other lysosomal storage disorders.


Assuntos
Doença de Fabry/genética , Doença de Fabry/terapia , RNA Mensageiro/uso terapêutico , alfa-Galactosidase/genética , Animais , Modelos Animais de Doenças , Endocitose , Terapia de Reposição de Enzimas , Terapia Genética , Humanos , Lipídeos/química , Lisossomos/metabolismo , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/farmacocinética , Distribuição Tecidual , Triexosilceramidas/metabolismo
3.
Proc Natl Acad Sci U S A ; 116(42): 21150-21159, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31501335

RESUMO

Arginase deficiency is caused by biallelic mutations in arginase 1 (ARG1), the final step of the urea cycle, and results biochemically in hyperargininemia and the presence of guanidino compounds, while it is clinically notable for developmental delays, spastic diplegia, psychomotor function loss, and (uncommonly) death. There is currently no completely effective medical treatment available. While preclinical strategies have been demonstrated, disadvantages with viral-based episomal-expressing gene therapy vectors include the risk of insertional mutagenesis and limited efficacy due to hepatocellular division. Recent advances in messenger RNA (mRNA) codon optimization, synthesis, and encapsulation within biodegradable liver-targeted lipid nanoparticles (LNPs) have potentially enabled a new generation of safer, albeit temporary, treatments to restore liver metabolic function in patients with urea cycle disorders, including ARG1 deficiency. In this study, we applied such technologies to successfully treat an ARG1-deficient murine model. Mice were administered LNPs encapsulating human codon-optimized ARG1 mRNA every 3 d. Mice demonstrated 100% survival with no signs of hyperammonemia or weight loss to beyond 11 wk, compared with controls that perished by day 22. Plasma ammonia, arginine, and glutamine demonstrated good control without elevation of guanidinoacetic acid, a guanidino compound. Evidence of urea cycle activity restoration was demonstrated by the ability to fully metabolize an ammonium challenge and by achieving near-normal ureagenesis; liver arginase activity achieved 54% of wild type. Biochemical and microscopic data showed no evidence of hepatotoxicity. These results suggest that delivery of ARG1 mRNA by liver-targeted nanoparticles may be a viable gene-based therapeutic for the treatment of arginase deficiency.


Assuntos
Hiperargininemia/tratamento farmacológico , Lipídeos/farmacologia , Hepatopatias/tratamento farmacológico , Fígado/efeitos dos fármacos , Nanopartículas/administração & dosagem , RNA Mensageiro/metabolismo , Amônia/metabolismo , Animais , Arginase/metabolismo , Arginina/metabolismo , Códon/metabolismo , Modelos Animais de Doenças , Glutamina/metabolismo , Hiperamonemia/tratamento farmacológico , Hiperamonemia/metabolismo , Hiperargininemia/metabolismo , Fígado/metabolismo , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ureia/metabolismo
4.
Nature ; 465(7300): 891-6, 2010 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-20559380

RESUMO

Archaeal and eukaryotic translation elongation factor 2 contain a unique post-translationally modified histidine residue called diphthamide, which is the target of diphtheria toxin. The biosynthesis of diphthamide was proposed to involve three steps, with the first being the formation of a C-C bond between the histidine residue and the 3-amino-3-carboxypropyl group of S-adenosyl-l-methionine (SAM). However, further details of the biosynthesis remain unknown. Here we present structural and biochemical evidence showing that the first step of diphthamide biosynthesis in the archaeon Pyrococcus horikoshii uses a novel iron-sulphur-cluster enzyme, Dph2. Dph2 is a homodimer and each of its monomers can bind a [4Fe-4S] cluster. Biochemical data suggest that unlike the enzymes in the radical SAM superfamily, Dph2 does not form the canonical 5'-deoxyadenosyl radical. Instead, it breaks the C(gamma,Met)-S bond of SAM and generates a 3-amino-3-carboxypropyl radical. Our results suggest that P. horikoshii Dph2 represents a previously unknown, SAM-dependent, [4Fe-4S]-containing enzyme that catalyses unprecedented chemistry.


Assuntos
Proteínas Arqueais/metabolismo , Radicais Livres/metabolismo , Histidina/análogos & derivados , Proteínas Ferro-Enxofre/metabolismo , Pyrococcus horikoshii/enzimologia , Radicais Livres/química , Histidina/biossíntese , Histidina/química , S-Adenosilmetionina/metabolismo
5.
Biochemistry ; 54(40): 6176-85, 2015 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-26393415

RESUMO

Escherichia coli DNA photolyase is a DNA-repair enzyme that repairs cyclobutane pyrimidine dimers (CPDs) that are formed on DNA upon exposure of cells to ultraviolet light. The light-driven electron-transfer mechanism by which photolyase catalyzes the CPD monomerization after the enzyme-substrate complex has formed has been studied extensively. However, much less is understood about how photolyase recognizes CPDs on DNA. It has been clearly established that photolyase, like many other DNA-repair proteins, requires flipping of the CPD site into an extrahelical position. Photolyase is unique in that it requires the two dimerized pyrimidine bases to flip rather than just a single damaged base. In this paper, we perform direct measurements of photolyase binding to CPD-containing undecamer DNA that has been labeled with a fluorophore. We find that the association constant of ∼2 × 10(6) M(-1) is independent of the location of the CPD on the undecamer DNA. The binding kinetics of photolyase are best described by two rate constants. The slower rate constant is ∼10(4) M(-1) s(-1) and is most likely due to steric interference of the fluorophore during the binding process. The faster rate constant is on the order of 2.5 × 10(5) M(-1) s(-1) and reflects the binding of photolyase to the CPD on the DNA. This result indicates that photolyase finds and binds to a CPD lesion 100-4000 times slower than other DNA-repair proteins. In light of the existing literature, we propose a mechanism in which photolyase recognizes a CPD that is flipped into an extrahelical position via a three-dimensional search.


Assuntos
Desoxirribodipirimidina Fotoliase/metabolismo , Escherichia coli/enzimologia , Dímeros de Pirimidina/metabolismo , Sequência de Bases , DNA/química , DNA/metabolismo , Desoxirribodipirimidina Fotoliase/química , Escherichia coli/química , Escherichia coli/metabolismo , Cinética , Simulação de Acoplamento Molecular , Desnaturação de Ácido Nucleico , Ligação Proteica , Dímeros de Pirimidina/química , Espectrometria de Fluorescência
6.
Biochemistry ; 53(4): 766-76, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24401092

RESUMO

The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (ß) subunits and determined to have a dimanganic-tyrosyl radical (Mn(III)2-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn(III)2-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min(-1) mg(-1)). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an "active" RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn(III)2-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·/ß2. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min(-1) mg(-1) using a 1:1 mixture of NrdE:Mn(III)2-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 µM), NrdE is a monomer (α) and Mn(III)2-Y· NrdF is a dimer (ß2). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.


Assuntos
Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Ribonucleotídeo Redutases/química , Biocatálise , Glutarredoxinas/química , Glutarredoxinas/genética , Glutarredoxinas/isolamento & purificação , Manganês/química , Oxirredução , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxina Dissulfeto Redutase/genética , Tiorredoxina Dissulfeto Redutase/isolamento & purificação , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/isolamento & purificação
7.
J Am Chem Soc ; 136(5): 1754-7, 2014 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-24422557

RESUMO

Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on translation elongation factor 2 (EF2) in archaea and eukaryotes. The biosynthesis of diphthamide was proposed to involve three steps. The first step is the transfer of the 3-amino-3-carboxypropyl group from S-adenosyl-l-methionine (SAM) to the histidine residue of EF2, forming a C-C bond. Previous genetic studies showed this step requires four proteins in eukaryotes, Dph1-Dph4. However, the exact molecular functions for the four proteins are unknown. Previous study showed that Pyrococcus horikoshii Dph2 (PhDph2), a novel iron-sulfur cluster-containing enzyme, forms a homodimer and is sufficient for the first step of diphthamide biosynthesis in vitro. Here we demonstrate by in vitro reconstitution that yeast Dph1 and Dph2 form a complex (Dph1-Dph2) that is equivalent to the homodimer of PhDph2 and is sufficient to catalyze the first step in vitro in the presence of dithionite as the reductant. We further demonstrate that yeast Dph3 (also known as KTI11), a CSL-type zinc finger protein, can bind iron and in the reduced state can serve as an electron donor to reduce the Fe-S cluster in Dph1-Dph2. Our study thus firmly establishes the functions for three of the proteins involved in eukaryotic diphthamide biosynthesis. For most radical SAM enzymes in bacteria, flavodoxins and flavodoxin reductases are believed to serve as electron donors for the Fe-S clusters. The finding that Dph3 is an electron donor for the Fe-S clusters in Dph1-Dph2 is thus interesting and opens up new avenues of research on electron transfer to Fe-S proteins in eukaryotic cells.


Assuntos
Histidina/análogos & derivados , Proteínas Ferro-Enxofre/química , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas Arqueais/química , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Vias Biossintéticas , Transporte de Elétrons , Escherichia coli/genética , Histidina/biossíntese , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Ligação Proteica , Multimerização Proteica , Pyrococcus horikoshii/enzimologia , Proteínas Recombinantes , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , S-Adenosilmetionina/química , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transfecção
8.
Anal Biochem ; 433(2): 218-26, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23123429

RESUMO

Protein ADP-ribosylation, including mono- and poly-ADP-ribosylation, is increasingly recognized to play important roles in various biological pathways. Molecular understanding of the functions of ADP-ribosylation requires the identification of the sites of modification. Although tandem mass spectrometry (MS/MS) is widely recognized as an effective means for determining protein modifications, identification of ADP-ribosylation sites has been challenging due to the labile and hydrophilic nature of the modification. Here we applied precursor ion scanning-triggered MS/MS analysis on a hybrid quadrupole linear ion trap mass spectrometer for selectively detecting ADP-ribosylated peptides and determining the auto-ADP-ribosylation sites of CD38 (cluster of differentiation 38) E226D and E226Q mutants. CD38 is an enzyme that catalyzes the hydrolysis of nicotinamide adenine dinucleotide (NAD) to ADP-ribose. Here we show that NAD can covalently label CD38 E226D and E226Q mutants but not wild-type CD38. In this study, we have successfully identified the D226/Q226 and K129 residues of the two CD38 mutants being the ADP-ribosylation sites using precursor ion scanning hybrid quadrupole linear ion trap mass spectrometry. The results offer insights about the CD38 enzymatic reaction mechanism. The precursor ion scanning method should be useful for identifying the modification sites of other ADP-ribosyltransferases such as poly(ADP-ribose) polymerases.


Assuntos
ADP-Ribosil Ciclase 1/metabolismo , Glicoproteínas de Membrana/metabolismo , Mutação de Sentido Incorreto , Poli Adenosina Difosfato Ribose/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo , ADP-Ribosil Ciclase 1/química , ADP-Ribosil Ciclase 1/genética , Substituição de Aminoácidos , Humanos , Espectrometria de Massas , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , NAD/química , NAD/genética , NAD/metabolismo , Poli Adenosina Difosfato Ribose/química , Poli Adenosina Difosfato Ribose/genética , Proteínas/química , Proteínas/genética
9.
Plant Commun ; 4(6): 100675, 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37608548

RESUMO

Heat stress caused by global warming requires the development of thermotolerant crops to sustain yield. It is necessary to understand the molecular mechanisms that underlie heat tolerance in plants. Strigolactones (SLs) are a class of carotenoid-derived phytohormones that regulate plant development and responses to abiotic or biotic stresses. Although SL biosynthesis and signaling processes are well established, genes that directly regulate SL biosynthesis have rarely been reported. Here, we report that the MYB-like transcription factor AtMYBS1/AtMYBL, whose gene expression is repressed by heat stress, functions as a negative regulator of heat tolerance by directly inhibiting SL biosynthesis in Arabidopsis. Overexpression of AtMYBS1 led to heat hypersensitivity, whereas atmybs1 mutants displayed increased heat tolerance. Expression of MAX1, a critical enzyme in SL biosynthesis, was induced by heat stress and downregulated in AtMYBS1-overexpression (OE) plants but upregulated in atmybs1 mutants. Overexpression of MAX1 in the AtMYBS1-OE background reversed the heat hypersensitivity of AtMYBS1-OE plants. Loss of MAX1 function in the atmyb1 background reversed the heat-tolerant phenotypes of atmyb1 mutants. Yeast one-hybrid assays, chromatin immunoprecipitation‒qPCR, and transgenic analyses demonstrated that AtMYBS1 directly represses MAX1 expression through the MYB binding site in the MAX1 promoter in vivo. The atmybs1d14 double mutant, like d14 mutants, exhibited hypersensitivity to heat stress, indicating the necessary role of SL signaling in AtMYBS1-regulated heat tolerance. Our findings provide new insights into the regulatory network of SL biosynthesis, facilitating the breeding of heat-tolerant crops to improve crop production in a warming world.


Assuntos
Arabidopsis , Termotolerância , Arabidopsis/metabolismo , Compostos Heterocíclicos com 3 Anéis/metabolismo , Lactonas/metabolismo , Plantas/metabolismo , Termotolerância/genética
10.
Mol Ther Nucleic Acids ; 28: 859-874, 2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35694211

RESUMO

Arginase deficiency is associated with prominent neuromotor features, including spastic diplegia, clonus, and hyperreflexia; intellectual disability and progressive neurological decline are other signs. In a constitutive murine model, we recently described leukodystrophy as a significant component of the central nervous system features of arginase deficiency. In the present studies, we sought to examine if the administration of a lipid nanoparticle carrying human ARG1 mRNA to constitutive knockout mice could prevent abnormalities in myelination associated with arginase deficiency. Imaging of the cingulum, striatum, and cervical segments of the corticospinal tract revealed a drastic reduction of myelinated axons; signs of degenerating axons were also present with thin myelin layers. Lipid nanoparticle/ARG1 mRNA administration resulted in both light and electron microscopic evidence of a dramatic recovery of myelin density compared with age-matched controls; oligodendrocytes were seen to be extending processes to wrap many axons. Abnormally thin myelin layers, when myelination was present, were resolved with intermittent mRNA administration, indicative of not only a greater density of myelinated axons but also an increase in the thickness of the myelin sheath. In conclusion, lipid nanoparticle/ARG1 mRNA administration in arginase deficiency prevents the associated leukodystrophy and restores normal oligodendrocyte function.

11.
Front Genet ; 13: 1055867, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36437927

RESUMO

Soybean cyst nematode (SCN) is a serious damaging disease in soybean worldwide. Peking- and PI 88788-type sources of resistance are two most important germplasm used in breeding resistant soybean cultivars against this disease. However, until now, no comparisons of constitutive resistances to soybean cyst nematode between these two types of sources had been conducted, probably due to the influences of different backgrounds. In this study, we used pooled-sample analysis strategy to minimize the influence of different backgrounds and directly compared the molecular mechanisms underlying constitutive resistance to soybean cyst nematode between these two types of sources via transcriptomic and metabolomic profilings. Six resistant soybean accessions that have identical haplotypes as Peking at Rgh1 and Rhg4 loci were pooled to represent Peking-type sources. The PI88788-type and control pools were also constructed in a same way. Through transcriptomic and metabolomics anaylses, differentially expressed genes and metabolites were identified. The molecular pathways involved in the metabolism of toxic metabolites were predicted to play important roles in conferring soybean cyst nematode resistance to soybean. Functions of two resistant candidate genes were confirmed by hairy roots transformation methods in soybean. Our studies can be helpful for soybean scientists to further learn about the molecular mechanism of resistance to soybean cyst nematode in soybean.

12.
J Food Prot ; 84(1): 23-30, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33393618

RESUMO

ABSTRACT: In order to reduce the health risks associated with red meat as listed by the World Health Organization, the work presented in this article aimed to elucidate the interaction between 5'-CMP-supplemented feed and N-glycolylneuraminic acid (Neu5Gc) in experimental animals in vivo. 5'-CMP was added to the diet of 90-, 180-, and 270-day-old Xiang pigs, and after 30 days, the Neu5Gc contents, physicochemical parameters, and free amino acid contents of muscle and internal viscera were measured by high-performance liquid chromatography coupled with fluorescence detection. The mechanism by which 5'-CMP affects Neu5Gc contents was investigated using molecular docking. Results show that 5'-CMP significantly decreased the Neu5Gc content in 180-day-old Xiang pigs (P < 0.05) but had no effect on the Neu5Gc contents in 90- and 270-day-old Xiang pigs. Umami amino acids were significantly increased in 180-day-old Xiang pigs. In the 90- and 270-day-old pigs, histidine increased by 10.38 and 17.87%, respectively. The other free amino acids were either reduced or not affected. Moreover, the 5'-CMP-supplemented diet did not affect the physicochemical parameters of the longissimus muscle in the Xiang pigs. 5'-CMP could occupy almost all the sialyltransferase active-site residues but not His302 and showed inhibition of the sialyltransferase activity. The results provided an experimental basis for the subsequent reduction of Neu5Gc in red meat before slaughter.


Assuntos
Dieta , Vísceras , Animais , Monofosfato de Citidina , Dieta/veterinária , Simulação de Acoplamento Molecular , Músculos , Suínos
13.
Biochemistry ; 49(44): 9649-57, 2010 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-20873788

RESUMO

Diphthamide, the target of diphtheria toxin, is a unique posttranslational modification on eukaryotic and archaeal translation elongation factor 2 (EF2). Although diphthamide modification was discovered three decades ago, in vitro reconstitution of diphthamide biosynthesis using purified proteins has not been reported. The proposed biosynthesis pathway of diphthamide involves three steps. Our laboratory has recently showed that in Pyrococcus horikoshii (P. horikoshii), the first step uses a [4Fe-4S] enzyme PhDph2 to generate a 3-amino-3-carboxypropyl radical from S-adenosyl-L-methionine (SAM) to form a C−C bond. The second step is the trimethylation of an amino group to form the diphthine intermediate. This step is catalyzed by a methyltransferase called diphthine synthase or Dph5. Here we report the in vitro reconstitution of the second step using P. horikoshii Dph5 (PhDph5). Our results demonstrate that PhDph5 is sufficient to catalyze the mono-, di-, and trimethylation of P. horikoshii EF2 (PhEF2). Interestingly, the trimethylated product from the PhDph5-catalyzed reaction can easily eliminate the trimethylamino group. The potential implication of this unexpected finding on the diphthamide biosynthesis pathway is discussed.


Assuntos
Proteínas Arqueais/metabolismo , Histidina/análogos & derivados , Metiltransferases/metabolismo , Fator 2 de Elongação de Peptídeos/metabolismo , Pyrococcus horikoshii/enzimologia , Vias Biossintéticas , Histidina/metabolismo , Processamento de Proteína Pós-Traducional , Pyrococcus horikoshii/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
14.
Sci Rep ; 10(1): 7052, 2020 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-32341402

RESUMO

Alpha 1-antitrypsin (AAT) deficiency arises from an inherited mutation in the SERPINA1 gene. The disease causes damage in the liver where the majority of the AAT protein is produced. Lack of functioning circulating AAT protein also causes uninhibited elastolytic activity in the lungs leading to AAT deficiency-related emphysema. The only therapy apart from liver transplantation is augmentation with human AAT protein pooled from sera, which is only reserved for patients with advanced lung disease caused by severe AAT deficiency. We tested modified mRNA encoding human AAT in primary human hepatocytes in culture, including hepatocytes from AAT deficient patients. Both expression and functional activity were investigated. Secreted AAT protein increased from 1,14 to 3,43 µg/ml in media from primary human hepatocytes following mRNA treatment as investigated by ELISA and western blot. The translated protein showed activity and protease inhibitory function as measured by elastase activity assay. Also, mRNA formulation in lipid nanoparticles was assessed for systemic delivery in both wild type mice and the NSG-PiZ transgenic mouse model of AAT deficiency. Systemic intravenous delivery of modified mRNA led to hepatic uptake and translation into a functioning protein in mice. These data support the use of systemic mRNA therapy as a potential treatment for AAT deficiency.


Assuntos
RNA Mensageiro/metabolismo , Deficiência de alfa 1-Antitripsina/genética , Deficiência de alfa 1-Antitripsina/terapia , Animais , Western Blotting , Células Cultivadas , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Humanos , Nanopartículas/química , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/fisiologia
15.
Nat Commun ; 11(1): 5339, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087718

RESUMO

Propionic acidemia/aciduria (PA) is an ultra-rare, life-threatening, inherited metabolic disorder caused by deficiency of the mitochondrial enzyme, propionyl-CoA carboxylase (PCC) composed of six alpha (PCCA) and six beta (PCCB) subunits. We herein report an enzyme replacement approach to treat PA using a combination of two messenger RNAs (mRNAs) (dual mRNAs) encoding both human PCCA (hPCCA) and PCCB (hPCCB) encapsulated in biodegradable lipid nanoparticles (LNPs) to produce functional PCC enzyme in liver. In patient fibroblasts, dual mRNAs encoded proteins localize in mitochondria and produce higher PCC enzyme activity vs. single (PCCA or PCCB) mRNA alone. In a hypomorphic murine model of PA, dual mRNAs normalize ammonia similarly to carglumic acid, a drug approved in Europe for the treatment of hyperammonemia due to PA. Dual mRNAs additionally restore functional PCC enzyme in liver and thus reduce primary disease-associated toxins in a dose-dependent manner in long-term 3- and 6-month repeat-dose studies in PA mice. Dual mRNAs are well-tolerated in these studies with no adverse findings. These studies demonstrate the potential of mRNA technology to chronically administer multiple mRNAs to produce large complex enzymes, with applicability to other genetic disorders.


Assuntos
Terapia de Reposição de Enzimas/métodos , Acidemia Propiônica/terapia , RNA Mensageiro/uso terapêutico , Animais , Modelos Animais de Doenças , Glutamatos/uso terapêutico , Humanos , Cinética , Lipídeos/química , Fígado/enzimologia , Metilmalonil-CoA Descarboxilase/química , Metilmalonil-CoA Descarboxilase/genética , Metilmalonil-CoA Descarboxilase/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Mitocôndrias/enzimologia , Nanopartículas/administração & dosagem , Nanopartículas/química , Acidemia Propiônica/genética , Acidemia Propiônica/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/genética , RNA Mensageiro/administração & dosagem , RNA Mensageiro/genética
16.
Sheng Wu Gong Cheng Xue Bao ; 35(5): 857-870, 2019 May 25.
Artigo em Zh | MEDLINE | ID: mdl-31223004

RESUMO

To investigate the effects of genistein (Gen) on the biosynthesis of N-glycolylneuraminic acid (Neu5Gc) in rats, 80 4-week-old male SD rats were randomly equally into the control and genistein groups. The rats of control and genistein groups were fed 5% ethanol and 300 mg/(kg·d) genistein respectively by gavage. The contents of Neu5Gc in hind leg muscle, kidney and liver tissues of rats were measured by using high performance liquid chromatography coupled with fluorescence detector (HPLC/FLD), and the mechanism of inhibition of Neu5Gc synthesis was investigated by using the molecular docking of Gen and sialyltransferase. On the 15th day, the content of Neu5Gc in hind leg muscle and liver tissues decreased 13.77% and 15.45%, respectively, and there was no significant change in the content of Neu5Gc in kidney tissues. On the 30th day, the content of Neu5Gc in liver tissues decreased 13.35%, however, there was no significant change in the content of Neu5Gc in kidney tissues and Neu5Gc was not detected in hind leg muscle. The content of Neu5Gc in hind leg muscle, kidney and liver tissues decreased respectively 32.65%, 32.78%, 16.80% and 12.72%, 11.42%, 12.30% while rats fed on the 45th and the 60th days. Genistein has formed the hydrogen bond with sialyltransferase activity site residues His319, Ser151, Gly293, Thr328 and formed a hydrophobic interactions with the residues His302, His301, Trp300, Ser271, Phe292, Thr328, Ser325 and Ile274. The results of molecular docking indicated that the weak intermolecular interaction was the main cause of genistein inhibiting sialyltransferase activity. The research results provided an experimental basis for the subsequent reduction of Neu5Gc in red meat before slaughter.


Assuntos
Regulação Enzimológica da Expressão Gênica , Genisteína , Ácidos Neuramínicos , Transferases , Animais , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Genisteína/farmacologia , Masculino , Simulação de Acoplamento Molecular , Ácidos Neuramínicos/metabolismo , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley , Transferases/metabolismo
17.
Cell Chem Biol ; 25(8): 1006-1016.e8, 2018 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-29937406

RESUMO

Viral envelope proteins are required for productive viral entry and initiation of infection. Although the humoral immune system provides ample evidence for targeting envelope proteins as an antiviral strategy, there are few pharmacological interventions that have this mode of action. In contrast to classical antiviral targets such as viral proteases and polymerases, viral envelope proteins as a class do not have a well-conserved active site that can be rationally targeted with small molecules. We previously identified compounds that inhibit dengue virus by binding to its envelope protein, E. Here, we show that these small molecules inhibit dengue virus fusion and map the binding site of these compounds to a specific pocket on E. We further demonstrate inhibition of Zika, West Nile, and Japanese encephalitis viruses by these compounds, providing pharmacological evidence for the pocket as a target for developing broad-spectrum antivirals against multiple, mosquito-borne flavivirus pathogens.


Assuntos
Antivirais/química , Antivirais/farmacologia , Infecções por Flavivirus/tratamento farmacológico , Flavivirus/efeitos dos fármacos , Proteínas do Envelope Viral/metabolismo , Internalização do Vírus/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Vírus da Dengue/química , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/fisiologia , Descoberta de Drogas , Flavivirus/química , Flavivirus/fisiologia , Infecções por Flavivirus/metabolismo , Infecções por Flavivirus/virologia , Humanos , Simulação de Acoplamento Molecular , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas do Envelope Viral/química , Replicação Viral/efeitos dos fármacos , Zika virus/química , Zika virus/efeitos dos fármacos , Zika virus/fisiologia
18.
Nat Med ; 24(12): 1899-1909, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30297912

RESUMO

Acute intermittent porphyria (AIP) results from haploinsufficiency of porphobilinogen deaminase (PBGD), the third enzyme in the heme biosynthesis pathway. Patients with AIP have neurovisceral attacks associated with increased hepatic heme demand. Phenobarbital-challenged mice with AIP recapitulate the biochemical and clinical characteristics of patients with AIP, including hepatic overproduction of the potentially neurotoxic porphyrin precursors. Here we show that intravenous administration of human PBGD (hPBGD) mRNA (encoded by the gene HMBS) encapsulated in lipid nanoparticles induces dose-dependent protein expression in mouse hepatocytes, rapidly normalizing urine porphyrin precursor excretion in ongoing attacks. Furthermore, hPBGD mRNA protected against mitochondrial dysfunction, hypertension, pain and motor impairment. Repeat dosing in AIP mice showed sustained efficacy and therapeutic improvement without evidence of hepatotoxicity. Finally, multiple administrations to nonhuman primates confirmed safety and translatability. These data provide proof-of-concept for systemic hPBGD mRNA as a potential therapy for AIP.


Assuntos
Terapia Genética , Hidroximetilbilano Sintase/genética , Porfiria Aguda Intermitente/terapia , RNA Mensageiro/administração & dosagem , Animais , Modelos Animais de Doenças , Feminino , Haploinsuficiência/genética , Heme/genética , Heme/metabolismo , Hepatócitos/efeitos dos fármacos , Humanos , Hidroximetilbilano Sintase/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Porfiria Aguda Intermitente/genética , Porfiria Aguda Intermitente/patologia , RNA Mensageiro/genética
19.
Cell Rep ; 21(12): 3548-3558, 2017 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-29262333

RESUMO

Isolated methylmalonic acidemia/aciduria (MMA) is a devastating metabolic disorder with poor outcomes despite current medical treatments. Like other mitochondrial enzymopathies, enzyme replacement therapy (ERT) is not available, and although promising, AAV gene therapy can be limited by pre-existing immunity and has been associated with genotoxicity in mice. To develop a new class of therapy for MMA, we generated a pseudoU-modified codon-optimized mRNA encoding human methylmalonyl-CoA mutase (hMUT), the enzyme most frequently mutated in MMA, and encapsulated it into biodegradable lipid nanoparticles (LNPs). Intravenous (i.v.) administration of hMUT mRNA in two different mouse models of MMA resulted in a 75%-85% reduction in plasma methylmalonic acid and was associated with increased hMUT protein expression and activity in liver. Repeat dosing of hMUT mRNA reduced circulating metabolites and dramatically improved survival and weight gain. Additionally, repeat i.v. dosing did not increase markers of liver toxicity or inflammation in heterozygote MMA mice.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/terapia , Terapia Genética/métodos , Metilmalonil-CoA Mutase/genética , Nanopartículas/administração & dosagem , RNA Mensageiro/genética , Administração Intravenosa , Animais , Feminino , Humanos , Lipídeos/química , Fígado/metabolismo , Masculino , Metilmalonil-CoA Mutase/metabolismo , Camundongos , Nanopartículas/química , RNA Mensageiro/metabolismo
20.
Cell Chem Biol ; 23(4): 443-52, 2016 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-27105280

RESUMO

Dengue virus infects more than 300 million people annually, yet there is no widely protective vaccine or drugs against the virus. Efforts to develop antivirals against classical targets such as the viral protease and polymerase have not yielded drugs that have advanced to the clinic. Here, we show that the allosteric Abl kinase inhibitor GNF-2 interferes with dengue virus replication via activity mediated by cellular Abl kinases but additionally blocks viral entry via an Abl-independent mechanism. To characterize this newly discovered antiviral activity, we developed disubstituted pyrimidines that block dengue virus entry with structure-activity relationships distinct from those driving kinase inhibition. We demonstrate that biotin- and fluorophore-conjugated derivatives of GNF-2 interact with the dengue glycoprotein, E, in the pre-fusion conformation that exists on the virion surface, and that this interaction inhibits viral entry. This study establishes GNF-2 as an antiviral compound with polypharmacological activity and provides "lead" compounds for further optimization efforts.


Assuntos
Antivirais/farmacologia , Vírus da Dengue/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-abl/antagonistas & inibidores , Pirimidinas/farmacologia , Animais , Antivirais/química , Vírus da Dengue/metabolismo , Relação Dose-Resposta a Droga , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células NIH 3T3 , Inibidores de Proteínas Quinases/química , Proteínas Proto-Oncogênicas c-abl/deficiência , Proteínas Proto-Oncogênicas c-abl/metabolismo , Pirimidinas/química , Relação Estrutura-Atividade , Proteínas do Envelope Viral/antagonistas & inibidores , Proteínas do Envelope Viral/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA