Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(15): 10753-10760, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37467194

RESUMO

A tetramethylammonium iodide (TBAI)-mediated cyclization and methylsulfonylation of propargylic amides enabled by dimethyl sulfite as a SO2 surrogate and methyl source have been developed. The transition metal-free and oxidant-free reaction provides a practical and efficient approach for the selective synthesis of methylsulfonyl oxazoles in moderate to excellent yields with good functional group compatibility.

2.
Appl Opt ; 60(30): 9474-9480, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34807088

RESUMO

A delay line consisting of a balanced side-coupled integrated spaced sequence of resonators and phase change material VO2 films is employed to realize continuously tunable delays with ultrafast response and low distortion. Simulation results show that a tunable delay of up to 80 ps with a 10% broadening, 150 GHz bandwidth, and 0.087 dB/ps delay loss is achieved from this structure. Taking advantage of photoinduced phase transition of VO2 films, this device obtains a switching time of less than 0.6 ps and effective compensation for group delay dispersion. This delay line shows advantages in the high-bit-rate all-optical processing systems.

3.
Small ; 12(3): 390-6, 2016 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-26578160

RESUMO

Here, a single-device demonstration of novel hybrid architecture is reported to achieve programmable transistor nodes which have analogies to flash memory by incorporating a resistive switching random access memory (RRAM) device as a resistive switch gate for field effect transistor (FET) on a flexible substrate. A high performance flexible RRAM with a three-layered structure is fabricated by utilizing solution-processed MoS2 nanosheets sandwiched between poly(methyl methacrylate) polymer layers. Gate coupling with the pentacene-based transistor can be controlled by the RRAM memory state to produce a nonprogrammed state (inactive) and a programmed state (active) with a well-defined memory window. Compared to the reference flash memory device based on the MoS2 floating gate, the hybrid device presents robust access speed and retention ability. Furthermore, the hybrid RRAM-gated FET is used to build an integrated logic circuit and a wide logic window in inverter logic is achieved. The controllable, well-defined memory window, long retention time, and fast access speed of this novel hybrid device may open up new possibilities of realizing fully functional nonvolatile memory for high-performance flexible electronics.

4.
ACS Appl Mater Interfaces ; 16(7): 9544-9550, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38346935

RESUMO

Quantum dot light-emitting diodes (QLEDs) have attracted increasing attention due to their excellent electroluminescent properties and compatibility with inkjet printing processes, which show great potential in applications of pixelated displays. However, the relatively low resolution of the inkjet printing technology limits its further development. In this paper, high-resolution QLEDs were successfully fabricated by electrohydrodynamic (EHD) printing. A pixelated quantum dot (QD) emission layer was formed by printing an insulating Teflon mesh on a spin-coated QD layer. The patterned QLEDs show a high resolution of 2540 pixels per inch (PPI), with a maximum external quantum efficiency (EQE) of 20.29% and brightness of 35816 cd/m2. To further demonstrate its potential in full-color display, the fabrication process for the QD layer was changed from spin-coating to EHD printing. The as-printed Teflon effectively blocked direct contact between the hole transport layer and the electron transport layer, thus preventing leakage currents. As a result, the device showed a resolution of 1692 PPI with a maximum EQE of 15.40%. To the best of our knowledge, these results represent the highest resolution and efficiency of pixelated QLEDs using inkjet printing or EHD printing, which demonstrates its huge potential in the application of high-resolution full-color displays.

5.
Inorg Chem ; 51(13): 7202-9, 2012 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-22686374

RESUMO

A novel red-emitting Ba(2)Tb(BO(3))(2)Cl:Eu phosphor possessing a broad excitation band in the near-ultraviolet (n-UV) region was synthesized by the solid-state reaction. Versatile Ba(2)Tb(BO(3))(2)Cl compound has a rigid open framework, which can offer two types of sites for various valence's cations to occupy, and the coexistence of Eu(2+)/Eu(3+) and the red-emitting luminescence from Eu(3+) with the aid of efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) have been investigated. Ba(2)Tb(BO(3))(2)Cl emits green emission with the main peak around 543 nm, which originates from (5)D(4) → (7)F(5) transition of Tb(3+). Ba(2)Tb(BO(3))(2)Cl:Eu shows bright red emission from Eu(3+) with peaks around 594, 612, and 624 nm under n-UV excitation (350-420 nm). The existence of Eu(2+) can be testified by the broad-band excitation spectrum, UV-vis reflectance spectrum, X-ray photoelectron spectrum, and Eu L(3)-edge X-ray absorption spectrum. Decay time and time-resolved luminescence measurements indicated that the interesting luminescence behavior should be ascribed to efficient energy transfer of Eu(2+)-Eu(3+)(Tb(3+)) and Tb(3+)-Eu(3+) in Ba(2)Tb(BO(3))(2)Cl:Eu phosphors.


Assuntos
Bário/química , Európio/química , Luz , Térbio/química , Transferência de Energia , Luminescência , Modelos Moleculares
6.
Luminescence ; 27(5): 379-81, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-21984410

RESUMO

A novel blue-emitting Sr3.5Y6.5O2(PO4)1.5SiO4(4.5) :Eu2+ phosphor was synthesized via a solid-state reaction. Powder X-ray diffraction (XRD) analysis demonstrated that the Sr3.5Y6.5O2(PO4)1.5(SiO4)4.5 host had a hexagonal crystal structure in the space group P6(3) /m and unit cell parameters a = 9.418 Å, c = 6.900 Å. The as-prepared phosphor showed a blue emission and all the main emission peaks were located at around 466 nm for different excitation wavelengths of 297, 333 and 391 nm. The temperature dependence of the photoluminescence property was investigated in the range 20-250 °C, and the emission intensity decreased to 71% of the initial value at room temperature on increasing the temperature to 150 °C. According to the classical theory of fluorescent thermal quenching, the activation energy (ΔE) for the thermal quenching luminescence of the as-prepared Sr3.45Y6.5O2(PO4)1.5(SiO4)4.5 :0.05Eu2+ phosphor was determined to be 0.20 eV.


Assuntos
Substâncias Luminescentes/síntese química , Európio/química , Luminescência , Substâncias Luminescentes/química , Medições Luminescentes , Estrôncio/química , Difração de Raios X
7.
ACS Appl Mater Interfaces ; 10(4): 4086-4094, 2018 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-29345473

RESUMO

Piezoresistive microsensors are considered to be essential components of the future wearable electronic devices. However, the expensive cost, complex fabrication technology, poor stability, and low yield have limited their developments for practical applications. Here, we present a cost-effective, relatively simple, and high-yield fabrication approach to construct highly sensitive and ultrastable piezoresistive sensors using a bioinspired hierarchically structured graphite/polydimethylsiloxane composite as the active layer. In this fabrication, a commercially available sandpaper is employed as the mold to develop the hierarchical structure. Our devices exhibit fascinating performance including an ultrahigh sensitivity (64.3 kPa-1), fast response time (<8 ms), low limit of detection of 0.9 Pa, long-term durability (>100 000 cycles), and high ambient stability (>1 year). The applications of these devices in sensing radial artery pulses, acoustic vibrations, and human body motion are demonstrated, exhibiting their enormous potential use in real-time healthcare monitoring and robotic tactile sensing.


Assuntos
Pele , Grafite , Humanos , Movimento (Física) , Tato
8.
ACS Appl Mater Interfaces ; 10(8): 7487-7496, 2018 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-29411961

RESUMO

Interface engineering has been recognized to be substantially critical for achieving efficient charge separation, charge carrier transport, and enhanced device performance in emerging optoelectronics. Nevertheless, precise control of the interface structure using current techniques remains a formidable challenge. Herein, we demonstrate a facile and versatile protocol wherein in situ thiol-ene click photopolymerization-induced phase separation is implemented for constructing heterojunction semiconductor interfaces. This approach generates continuous mountainlike heterojunction interfaces that favor efficient exciton dissociation at the interface while providing a continuous conductive area for hole transport above the interface. This facile low-temperature paradigm presents good adaptability to both rigid and flexible substrates, offering high-performance UV-responsive phototransistors with a normalized detectivity up to 6.3 × 1014 cm Hz1/2 W-1 (also called jones). Control experiments based on ex situ photopolymerization and in situ thermal polymerization are also implemented to demonstrate the superiority of this novel paradigm.

9.
ACS Appl Mater Interfaces ; 9(39): 34101-34110, 2017 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-28891295

RESUMO

For following the trend of miniaturization as per Moore's law, increasing efforts have been made to develop single devices with versatile functionalities for Internet of Things (IoT). In this work, organic optical memory devices with excellent dual optoelectronic functionality including light sensing and data storage have been proposed. The Au@Ag core-shell nanorods (NRs)-based memory device exhibits large memory window up to 19.7 V due to the well-controlled morphology of Au@Ag NRs with optimum size and concentration. Furthermore, since the extinction intensity of Au@Ag NRs gradually enhance with the increase in Ag shell thickness, the phototunable behaviors of memory device were systematically studied by varying the thickness of Ag shell. Multilevel data storage can be achieved with the light assistant. Finally, the simulation results demonstrate that the phototunable memory property is originated from the multimode localized surface plasmon resonance (LSPR) of Au@Ag NRs, which is in consistent with the experimental results. The Au@Ag core-shell NRs-based memories may open up a new strategy toward developing high-performance optoelectronic devices.

10.
ACS Appl Mater Interfaces ; 8(45): 31128-31135, 2016 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-27762140

RESUMO

Previous investigations on rare-earth oxides (REOs) reveal their high possibility as dielectric films in electronic devices, while complicated physical methods impede their developments and applications. Herein, we report a facile route to fabricate 16 REOs thin insulating films through a general solution process and their applications in low-voltage thin-film transistors as dielectrics. The formation and properties of REOs thin films are analyzed by atomic force microscopy (AFM), X-ray diffraction (XRD), spectroscopic ellipsometry, water contact angle measurement, X-ray photoemission spectroscopy (XPS), and electrical characterizations, respectively. Ultrasmooth, amorphous, and hydrophilic REO films with thickness around 10 nm have been obtained through a combined spin-coating and postannealing method. The compositional analysis results reveal the formation of RE hydrocarbonates on the surface and silicates at the interface of REOs films annealed on Si substrate. The dielectric properties of REO films are investigated by characterizing capacitors with a Si/Ln2O3/Au (Ln = La, Gd, and Er) structure. The observed low leakage current densities and large areal capacitances indicate these REO films can be employed as alternative gate dielectrics in transistors. Thus, we have successfully fabricated a series of low-voltage organic thin-film transistors based on such sol-gel derived REO films to demonstrate their application in electronics. The optimization of REOs dielectrics in transistors through further surface modification has also been studied. The current study provides a simple solution process approach to fabricate varieties of REOs insulating films, and the results reveal their promising applications as alternative gate dielectrics in thin-film transistors.

11.
Sci Rep ; 5: 15770, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26497412

RESUMO

Conventional techniques to form selective surface energy regions on rigid inorganic substrates are not suitable for polymer interfaces due to sensitive and soft limitation of intrinsic polymer properties. Therefore, there is a strong demand for finding a novel and compatible method for polymeric surface energy modification. Here, by employing the confined photo-catalytic oxidation method, we successfully demonstrate full polymer filed-effect transistors fabricated through four-step spin-coating process on a flexible polymer substrate. The approach shows negligible etching effect on polymeric film. Even more, the insulating property of polymeric dielectric is not affected by the method, which is vital for polymer electronics. Finally, the self-aligned full polymer field-effect transistors on the flexible polymeric substrate are fabricated, showing good electrical properties and mechanical flexibility under bending tests.

12.
ACS Appl Mater Interfaces ; 7(42): 23464-71, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26439239

RESUMO

A simple photochemical reaction based on confined photocatalytic oxidation (CPO) treatment and hydrolysis was employed to efficiently convert C-H bonds into C-OH groups on polymeric material surfaces, followed by investigation of monolayer self-assembly decoration on polymeric dielectrics via chemical bonding for the organic field-effect transistors (OFETs) applications. This method is a low temperature process and has negligible etching effect on polymeric dielectric layers. Various types of self-assembled monolayers have been tested and successfully attached onto the hydroxylated polymeric dielectric surfaces through chemical bonding, ensuring the stability of decorated functional films during the subsequent device fabrication consisting of solution processing of the polymer active layer. With the surface decoration of functional groups, both n-type and p-type polymers exhibit enhanced carrier mobilities in the unipolar OFETs. In addition, enhanced and balanced mobilities are obtained in the ambipolar OFETs with the blend of polymer semiconductors. The anchored self-assembled monolayers on the dielectric surfaces dramatically preclude the solvent effect, thus enabling an improvement of carrier mobility up to 2 orders of magnitude. Our study opens a way of targeted modifications of polymeric surfaces and related applications in organic electronics.

13.
Sci Rep ; 5: 10683, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26029856

RESUMO

Flexible memory cell array based on high mobility donor-acceptor diketopyrrolopyrrole polymer has been demonstrated. The memory cell exhibits low read voltage, high cell-to-cell uniformity and good mechanical flexibility, and has reliable retention and endurance memory performance. The electrical properties of the memory devices are systematically investigated and modeled. Our results suggest that the polymer blends provide an important step towards high-density flexible nonvolatile memory devices.

14.
Sci Rep ; 5: 14998, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26449199

RESUMO

Traditional utilization of photo-induced excitons is popularly but restricted in the fields of photovoltaic devices as well as photodetectors, and efforts on broadening its function have always been attempted. However, rare reports are available on organic field effect transistor (OFET) memory employing photo-induced charges. Here, we demonstrate an OFET memory containing a novel organic lanthanide complex Eu(tta)3ppta (Eu(tta)3 = Europium(III) thenoyltrifluoroacetonate, ppta = 2-phenyl-4,6-bis(pyrazol-1-yl)-1,3,5-triazine), in which the photo-induced charges can be successfully trapped and detrapped. The luminescent complex emits intense red emission upon ultraviolet (UV) light excitation and serves as a trapping element of holes injected from the pentacene semiconductor layer. Memory window can be significantly enlarged by light-assisted programming and erasing procedures, during which the photo-induced excitons in the semiconductor layer are separated by voltage bias. The enhancement of memory window is attributed to the increasing number of photo-induced excitons by the UV light. The charges are stored in this luminescent complex for at least 10(4) s after withdrawing voltage bias. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices.

15.
Dalton Trans ; 42(18): 6327-36, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23385482

RESUMO

A new strategy based on the host composition design has been adopted to obtain efficient color-tunable emission from Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu (Ln = Y, Gd and Lu, z = 0-0.97) phosphors. This study reveals that the single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl compounds can be applied to use allowed Eu(2+) absorption transitions to sensitize Eu(3+) emission via the energy transfer Eu(2+) → (Tb(3+))n → Eu(3+). The powder X-ray diffraction (XRD) and Rietveld refinement analysis shows single-phase Ba2Ln(1-z)Tb(z)(BO3)2Cl. As-prepared Ba2Ln(0.97-z)Tb(z)(BO3)2Cl:0.03Eu phosphors show intense green, yellow, orange and red emission under 377 nm near ultraviolet (n-UV) excitation due to a variation in the relative intensities of the Eu(2+), Tb(3+) and Eu(3+) emission depending on the Tb content (z) in the host composition, allowing color tuning. The variation in emission color is explained by energy transfer and has been investigated by photoluminescence and lifetime measurements and is further characterized by the Commission Internationale de l'éclairage (CIE) chromaticity indexes. The quantum efficiencies of the phosphors are high, up to 74%, and show good thermal stabilities up to 150 °C. This investigation demonstrates the possibility to sensitize Eu(3+) line emission by Eu(2+)via energy migration over Tb(3+) resulting in efficient color tunable phosphors which are promising for use in solid-state white light-emitting diodes (w-LEDs).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA