Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(10)2019 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-31109052

RESUMO

Black and red rice are rich in both anthocyanin and proanthocyanin content, which belong to a large class of flavonoids derived from a group of phenolic secondary metabolites. However, the molecular pathways and mechanisms underlying the flavonoid biosynthetic pathway are far from clear. Therefore, this study was undertaken to gain insight into physiological factors that are involved in the flavonoid biosynthetic pathway in rice cultivars with red, black, and white colors. RNA sequencing of caryopsis and isobaric tags for relative and absolute quantification (iTRAQ) analyses have generated a nearly complete catalog of mRNA and expressed proteins in different colored rice cultivars. A total of 31,700 genes were identified, of which 3417, 329, and 227 genes were found specific for red, white, and black rice, respectively. A total of 13,996 unique peptides corresponding to 3916 proteins were detected in the proteomes of black, white, and red rice. Coexpression network analyses of differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) among the different rice cultivars showed significant differences in photosynthesis and flavonoid biosynthesis pathways. Based on a differential enrichment analysis, 32 genes involved in the flavonoid biosynthesis pathway were detected, out of which only CHI, F3H, ANS, and FLS were detected by iTRAQ. Taken together, the results point to differences in flavonoid biosynthesis pathways among different colored rice cultivars, which may reflect differences in physiological functions. The differences in contents and types of flavonoids among the different colored rice cultivars are related to changes in base sequences of Os06G0162500, Os09G0455500, Os09G0455500, and Os10G0536400. Current findings expand and deepen our understanding of flavonoid biosynthesis and concurrently provides potential candidate genes for improving the nutritional qualities of rice.


Assuntos
Vias Biossintéticas , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Oryza/fisiologia , Proteoma , Transcriptoma , Cromatografia Líquida , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Metaboloma , Metabolômica/métodos , Proteômica/métodos , Espectrometria de Massas em Tandem
2.
BMC Genomics ; 16: 377, 2015 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-25962502

RESUMO

BACKGROUND: The growth and development of skeletal muscle directly impacts the quantity and quality of pork production. Chinese indigenous pig breeds and exotic species vary greatly in terms of muscle production and performance traits. We present transcriptome profiles of 110 skeletal muscle samples from Tongcheng (TC) and Yorkshire (YK) pigs at 11 developmental periods (30, 40, 55, 63, 70, 90, and 105 days of gestation, and 0, 1, 3, and 5 weeks of age) using digital gene expression on Solexa/Illumina's Genome Analyzer platform to investigate the differences in prenatal and postnatal skeletal muscle between the two breeds. RESULTS: Muscle morphological changes indicate the importance of primary fiber formation from 30 to 40 dpc (days post coitus), and secondary fiber formation from 55 to 70 dpc. We screened 4,331 differentially expressed genes in TC and 2,259 in YK (log2 ratio >1 and probability >0.7). Cluster analysis showed different gene expression patterns between TC and YK pigs. The transcripts were annotated in terms of Gene Ontology related to muscle development. We found that the genes CXCL10, EIF2B5, PSMA6, FBXO32, and LOC100622249 played vital roles in the muscle regulatory networks in the TC breed, whereas the genes SGCD, ENG, THBD, AQP4, and BTG2 played dominant roles in the YK breed. These genes showed breed-specific and development-dependent differential expression patterns. Furthermore, 984 genes were identified in myogenesis. A heat map showed that significantly enriched pathways (FDR <0.05) had stage-specific functional regulatory mechanisms. Finally, the differentially expressed genes from our sequencing results were confirmed by real-time quantitative polymerase chain reaction. CONCLUSIONS: This study detected many functional genes and showed differences in the molecular mechanisms of skeletal muscle development between TC and YK pigs. TC pigs showed slower muscle growth and more complicated genetic regulation than YK pigs. Many differentially expressed genes showed breed-specific expression patterns. Our data provide a better understanding of skeletal muscle developmental differences and valuable information for improving pork quality.


Assuntos
Músculo Esquelético/metabolismo , Transcriptoma , Animais , Análise por Conglomerados , Redes Reguladoras de Genes , Genoma , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/patologia , RNA/análise , RNA/isolamento & purificação , RNA/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Suínos/genética , Suínos/metabolismo
3.
Microbiol Spectr ; 12(7): e0428723, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38785444

RESUMO

Chronic obstructive pulmonary disease (COPD) is one of the primary causes of mortality and morbidity worldwide. The gut microbiome, particularly the bacteriome, has been demonstrated to contribute to the progression of COPD. However, the influence of gut virome on the pathogenesis of COPD is rarely studied. Recent advances in viral metagenomics have enabled the rapid discovery of its remarkable role in COPD. In this study, deep metagenomics sequencing of fecal virus-like particles and bacterial 16S rRNA sequencing was performed on 92 subjects from China to characterize alterations of the gut virome in COPD. Lower richness and diversity of the gut virome were observed in the COPD subjects compared with the healthy individuals. Sixty-four viral species, including Clostridium phage, Myoviridae sp., and Synechococcus phage, showed positive relationships with pulmonary ventilation functions and had markedly declined population in COPD subjects. Multiple viral functions, mainly involved in bacterial susceptibility and the interaction between bacteriophages and bacterial hosts, were significantly declined in COPD. In addition, COPD was characterized by weakened viral-bacterial interactions compared with those in the healthy cohort. The gut virome showed diagnostic performance with an area under the curve (AUC) of 88.7%, which indicates the potential diagnostic value of the gut virome for COPD. These results suggest that gut virome may play an important role in the development of COPD. The information can provide a reference for the future investigation of diagnosis, treatment, and in-depth mechanism research of COPD. IMPORTANCE: Previous studies showed that the bacteriome plays an important role in the progression of chronic obstructive pulmonary disease (COPD). However, little is known about the involvement of the gut virome in COPD. Our study explored the disease-specific virome signatures of patients with COPD. We found the diversity and compositions altered of the gut virome in COPD subjects compared with healthy individuals, especially those viral species positively correlated with pulmonary ventilation functions. Additionally, the declined bacterial susceptibility, the interaction between bacteriophages and bacterial hosts, and the weakened viral-bacterial interactions in COPD were observed. The findings also suggested the potential diagnostic value of the gut virome for COPD. The results highlight the significance of gut virome in COPD. The novel strategies for gut virome rectifications may help to restore the balance of gut microecology and represent promising therapeutics for COPD.


Assuntos
Bacteriófagos , Fezes , Microbioma Gastrointestinal , Doença Pulmonar Obstrutiva Crônica , Viroma , Doença Pulmonar Obstrutiva Crônica/virologia , Humanos , Microbioma Gastrointestinal/genética , Pessoa de Meia-Idade , Masculino , Feminino , Idoso , Fezes/virologia , Fezes/microbiologia , Bacteriófagos/genética , Bacteriófagos/classificação , Bacteriófagos/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Bactérias/virologia , RNA Ribossômico 16S/genética , Metagenômica , China
4.
Gut Microbes ; 15(1): 2226925, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37349979

RESUMO

Although changes in gut microbiome have been associated with the development of T2D and its complications, the role of the gut virome remains largely unknown. Here, we characterized the gut virome alterations in T2D and its complications diabetic nephropathy (DN) by metagenomic sequencing of fecal viral-like particles. Compared with controls, T2D subjects, especially those with DN, had significantly lower viral richness and diversity. 81 viral species were identified to be significantly altered in T2D subjects, including a decrease in some phages (e.g. Flavobacterium phage and Cellulophaga phaga). DN subjects were depleted of 12 viral species, including Bacteroides phage, Anoxybacillus virus and Brevibacillus phage, and enriched in 2 phages (Shigella phage and Xylella phage). Multiple viral functions, particularly those of phage lysing host bacteria, were markedly reduced in T2D and DN. Strong viral-bacterial interactions in healthy controls were disrupted in both T2D and DN. Moreover, the combined use of gut viral and bacterial markers achieved a powerful diagnostic performance for T2D and DN, with AUC of 99.03% and 98.19%, respectively. Our results suggest that T2D and its complication DN are characterized by a significant decrease in gut viral diversity, changes in specific virus species, loss of multiple viral functions, and disruption of viral-bacterial correlations. The combined gut viral and bacterial markers have diagnostic potential for T2D and DN.


Assuntos
Bacteriófagos , Diabetes Mellitus Tipo 2 , Nefropatias Diabéticas , Microbioma Gastrointestinal , Humanos , Viroma , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/microbiologia , Bacteriófagos/genética , Bactérias/genética
5.
Genes (Basel) ; 12(6)2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-34198687

RESUMO

To understand the intestinal microbial diversity and community structure of bighead carp (Aristichthys nobilis) under different feeding strategies, 39 fish from three groups (A: 9 fish, natural live food only; B: 15 fish, natural live food + fish formulated feeds; C: 15 fish, natural live food + fish formulated feed + lactic acid bacteria) were obtained for the high throughput 16S rRNA gene sequencing. We first examined five non-specific immunity indications of the carp-lysozyme (LZM), catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GSH-PX), and superoxide dismutase (SOD). Interestingly, the composition of gut microbiota and related non-specific immune indices were affected by the feeding treatment of the bighead carp. Notably, all enzyme activity indexes were significantly different (p < 0.01) in the spleen and three enzyme activity indexes (LZM, GSH-PX, and SOD) had significant differences in the hepatopancreas (p < 0.001) of the carp from the three groups. The 16S rRNA gene sequencing showed higher diversity in groups B and C. Compared to group A, the relative abundance of Actinobacteria increased significantly and the relative abundance of Proteobacteria and Firmicutes decreased significantly in groups B and C at the phylum level. Functional analysis revealed the association between non-specific immune indicators and import genera in the hepatopancreas and spleen of bighead carp. This study provides new insights into the gut microbiomes and non-specific immune of bighead carp.


Assuntos
Cyprinidae/microbiologia , Microbioma Gastrointestinal , Imunidade Inata/genética , Animais , Catalase/genética , Catalase/metabolismo , Cyprinidae/imunologia , Cyprinidae/fisiologia , Dieta , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Muramidase/genética , Muramidase/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
6.
Nat Commun ; 9(1): 5433, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30575759

RESUMO

Tibetan barley (Hordeum vulgare L., qingke) is the principal cereal cultivated on the Tibetan Plateau for at least 3,500 years, but its origin and domestication remain unclear. Here, based on deep-coverage whole-genome and published exome-capture resequencing data for a total of 437 accessions, we show that contemporary qingke is derived from eastern domesticated barley and it is introduced to southern Tibet most likely via north Pakistan, India, and Nepal between 4,500 and 3,500 years ago. The low genetic diversity of qingke suggests Tibet can be excluded as a center of origin or domestication for barley. The rapid decrease in genetic diversity from eastern domesticated barley to qingke can be explained by a founder effect from 4,500 to 2,000 years ago. The haplotypes of the five key domestication genes of barley support a feral or hybridization origin for Tibetan weedy barley and reject the hypothesis of native Tibetan wild barley.


Assuntos
Domesticação , Efeito Fundador , Genoma de Planta , Hordeum/genética , Filogeografia , Tibet
7.
Sci Rep ; 7(1): 5401, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710486

RESUMO

Litchi (Litchi chinensis Sonn.) is an important fruit that is widely cultivated in tropical and subtropical areas. In this study, we used RNA-Seq and iTRAQ technologies to compare the transcriptomes and proteomes of pollinated (polLFs) and parthenocarpic (parLFs) litchi fruits during early development (1 day, 2 days, 4 days and 6 days). We identified 4,864 DEGs in polLFs and 3,672 in parLFs, of which 2,835 were shared and 1,051 were specifically identified in parLFs. Compared to po1LFs, 768 DEGs were identified in parLFs. iTRAQ analysis identified 551 DEPs in polLFs and 1,021 in parLFs, of which 305 were shared and 526 were exclusively identified in parLFs. We found 1,127 DEPs in parLFs compared to polLFs at different stages. Further analysis revealed some DEGs/DEPs associated with abscisic acid, auxin, ethylene, gibberellin, heat shock protein (HSP), histone, ribosomal protein, transcription factor and zinc finger protein (ZFP). WGCNA identified a large set of co-expressed genes/proteins in polLFs and parLFs. In addition, a cross-comparison of transcriptomic and proteomic data identified 357 consistent DEGs/DEPs in polLFs and parLFs. This is the first time that protein/gene changes have been studied in polLFs and parLFs, and the findings improve our understanding of litchi parthenocarpy.


Assuntos
Frutas/genética , Frutas/metabolismo , Perfilação da Expressão Gênica/métodos , Litchi/genética , Litchi/metabolismo , Proteômica/métodos , Análise por Conglomerados , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Litchi/crescimento & desenvolvimento , Partenogênese , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polinização , Proteoma/genética , Proteoma/metabolismo
8.
Biomed Res Int ; 2016: 3290260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28025641

RESUMO

Background. Chronic infection with hepatitis B virus (HBV) is a leading cause of cirrhosis and hepatocellular carcinoma. By traditional Chinese medicine (TCM) pattern classification, damp heat stasis in the middle-jiao (DHSM) and liver Qi stagnation and spleen deficiency (LSSD) are two most common subtypes of CHB. Results. In this study, we employed iTRAQ proteomics technology to identify potential serum protein biomarkers in 30 LSSD-CHB and 30 DHSM-CHB patients. Of the total 842 detected proteins, 273 and 345 were differentially expressed in LSSD-CHB and DHSM-CHB patients compared to healthy controls, respectively. LSSD-CHB and DHSM-CHB shared 142 upregulated and 84 downregulated proteins, of which several proteins have been reported to be candidate biomarkers, including immunoglobulin (Ig) related proteins, complement components, apolipoproteins, heat shock proteins, insulin-like growth factor binding protein, and alpha-2-macroglobulin. In addition, we identified that proteins might be potential biomarkers to distinguish LSSD-CHB from DHSM-CHB, such as A0A0A0MS51_HUMAN (gelsolin), PON3_HUMAN, Q96K68_HUMAN, and TRPM8_HUMAN that were differentially expressed exclusively in LSSD-CHB patients and A0A087WT59_HUMAN (transthyretin), ITIH1_HUMAN, TSP1_HUMAN, CO5_HUMAN, and ALBU_HUMAN that were differentially expressed specifically in DHSM-CHB patients. Conclusion. This is the first time to report serum proteins in CHB subtype patients. Our findings provide potential biomarkers can be used for LSSD-CHB and DHSM-CHB.


Assuntos
Proteínas Sanguíneas/metabolismo , Hepatite B Crônica/sangue , Hepatite B Crônica/diagnóstico , Medicina Tradicional Chinesa , Proteômica , Adolescente , Adulto , Biomarcadores/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA