Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Mater ; 22(11): 1370-1379, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37798516

RESUMO

Li[LixNiyMnzCo1-x-y-z]O2 (lithium-rich NMCs) are benchmark cathode materials receiving considerable attention due to the abnormally high capacities resulting from their anionic redox chemistry. Although their anionic redox mechanisms have been much investigated, the roles of cationic redox processes remain underexplored, hindering further performance improvement. Here we decoupled the effects of nickel and cobalt in lithium-rich NMCs via a comprehensive study of two typical compounds, Li1.2Ni0.2Mn0.6O2 and Li1.2Co0.4Mn0.4O2. We discovered that both Ni3+/4+ and Co4+, generated during cationic redox processes, are actually intermediate species for triggering oxygen redox through a ligand-to-metal charge-transfer process. However, cobalt is better than nickel in mediating the kinetics of ligand-to-metal charge transfer by favouring more transition metal migration, leading to less cationic redox but more oxygen redox, more O2 release, poorer cycling performance and more severe voltage decay. Our work highlights a compositional optimization pathway for lithium-rich NMCs by deviating from using cobalt to using nickel, providing valuable guidelines for future high-capacity cathode design.

2.
Small ; 19(39): e2300802, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37259273

RESUMO

Stable cycling of LiCoO2 (LCO) cathode at high voltage is extremely challenging due to the notable structural instability in deeply delithiated states. Here, using the sol-gel coating method, LCO materials (LMP-LCO) are obtained with bulk Mg-doping and surface LiMgPO4 /Li3 PO4 (LMP/LPO) coating. The experimental results suggest that the simultaneous modification in the bulk and at the surface is demonstrated to be highly effective in improving the high-voltage performance of LCO. LMP-LCO cathodes deliver 149.8 mAh g-1 @4.60 V and 146.1 mAh g-1 @4.65 V after 200 cycles at 1 C. For higher cut-off voltages, 4.70 and 4.80 V, LMP-LCO cathodes still achieve 144.9 mAh g-1 after 150 cycles and 136.8 mAh g-1 after 100 cycles at 1 C, respectively. Bulk Mg-dopants enhance the ionicity of CoO bond by tailoring the band centers of Co 3d and O 2p, promoting stable redox on O2- , and thus enhancing stable cycling at high cut-off voltages. Meanwhile, LMP/LPO surface coating suppresses detrimental surface side reactions while allowing facile Li-ion diffusion. The mechanism of high-voltage cycling stability is investigated by combining experimental characterizations and theoretical calculations. This study proposes a strategy of surface-to-bulk simultaneous modification to achieve superior structural stability at high voltages.

3.
Angew Chem Int Ed Engl ; 62(5): e202215131, 2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36471651

RESUMO

Charge compensation on anionic redox reaction (ARR) has been promising to realize extra capacity beyond transition metal redox in battery cathodes. The practical development of ARR capacity has been hindered by high-valence oxygen instability, particularly at cathode surfaces. However, the direct probe of surface oxygen behavior has been challenging. Here, the electronic states of surface oxygen are investigated by combining mapping of resonant Auger electronic spectroscopy (mRAS) and ambient pressure X-ray photoelectron spectroscopy (APXPS) on a model LiCoO2 cathode. The mRAS verified that no high-valence oxygen can sustain at cathode surfaces, while APXPS proves that cathode electrolyte interphase (CEI) layer evolves and oxidizes upon oxygen gas contact. This work provides valuable insights into the high-valence oxygen degradation mode across the interface. Oxygen stabilization from surface architecture is proven a prerequisite to the practical development of ARR active cathodes.

4.
Nano Lett ; 17(10): 6018-6026, 2017 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-28771015

RESUMO

Because of their enhanced kinetic properties, nanocrystallites have received much attention as potential electrode materials for energy storage. However, because of the large specific surface areas of nanocrystallites, they usually suffer from decreased energy density, cycling stability, and effective electrode capacity. In this work, we report a size-dependent excess capacity beyond theoretical value (170 mA h g-1) by introducing extra lithium storage at the reconstructed surface in nanosized LiFePO4 (LFP) cathode materials (186 and 207 mA h g-1 in samples with mean particle sizes of 83 and 42 nm, respectively). Moreover, this LFP composite also shows excellent cycling stability and high rate performance. Our multimodal experimental characterizations and ab initio calculations reveal that the surface extra lithium storage is mainly attributed to the charge passivation of Fe by the surface C-O-Fe bonds, which can enhance binding energy for surface lithium by compensating surface Fe truncated symmetry to create two types of extra positions for Li-ion storage at the reconstructed surfaces. Such surface reconstruction nanotechnology for excess Li-ion storage makes full use of the large specific surface area of the nanocrystallites, which can maintain the fast Li-ion transport and greatly enhance the capacity. This discovery and nanotechnology can be used for the design of high-capacity and efficient lithium ion batteries.

5.
J Am Chem Soc ; 139(50): 18358-18364, 2017 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-29169239

RESUMO

A sodium-ion battery (SIB) solution is attractive for grid-scale electrical energy storage. Low-cost hexacyanometalate is a promising electrode material for SIBs because of its easy synthesis and open framework. Most hexacyanometalate-based SIBs work with aqueous electrolyte, and interstitial water in the material has been found to strongly affect the electrochemical profile, but the mechanism remains elusive. Here we provide a comparative study of the transition-metal redox in hexacyanometalate electrodes with and without interstitial water based on soft X-ray absorption spectroscopy and theoretical calculations. We found distinct transition-metal redox sequences in hydrated and anhydrated NaxMnFe(CN)6·zH2O. The Fe and Mn redox in hydrated electrodes are separated and are at different potentials, leading to two voltage plateaus. On the contrary, mixed Fe and Mn redox in the same potential range is found in the anhydrated system. This work reveals for the first time how transition-metal redox in batteries is strongly affected by interstitial molecules that are seemingly spectators. The results suggest a fundamental mechanism based on three competing factors that determine the transition-metal redox potentials. Because most hexacyanometalate electrodes contain water, this work directly reveals the mechanism of how interstitial molecules could define the electrochemical profile, especially for electrodes based on transition-metal redox with well-defined spin states.

6.
J Am Chem Soc ; 139(51): 18670-18680, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-29186955

RESUMO

Solid-electrolyte interphase (SEI) is the key component that enables all advanced electrochemical devices, the best representative of which is Li-ion battery (LIB). It kinetically stabilizes electrolytes at potentials far beyond their thermodynamic stability limits, so that cell reactions could proceed reversibly. Its ad hoc chemistry and formation mechanism has been a topic under intensive investigation since the first commercialization of LIB 25 years ago. Traditionally SEI can only be formed in nonaqueous electrolytes. However, recent efforts successfully transplanted this concept into aqueous media, leading to significant expansion in the electrochemical stability window of aqueous electrolytes from 1.23 V to beyond 4.0 V. This not only made it possible to construct a series of high voltage/energy density aqueous LIBs with unprecedented safety, but also brought high flexibility and even "open configurations" that have been hitherto unavailable for any LIB chemistries. While this new class of aqueous electrolytes has been successfully demonstrated to support diversified battery chemistries, the chemistry and formation mechanism of the key component, an aqueous SEI, has remained virtually unknown. In this work, combining various spectroscopic, electrochemical and computational techniques, we rigorously examined this new interphase, and comprehensively characterized its chemical composition, microstructure and stability in battery environment. A dynamic picture obtained reveals how a dense and protective interphase forms on anode surface under competitive decompositions of salt anion, dissolved ambient gases and water molecule. By establishing basic laws governing the successful formation of an aqueous SEI, the in-depth understanding presented in this work will assist the efforts in tailor-designing better interphases that enable more energetic chemistries operating farther away from equilibria in aqueous media.

7.
Nano Lett ; 16(1): 601-8, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26632008

RESUMO

Lithium iron phosphate, a widely used cathode material, crystallizes typically in olivine-type phase, α-LiFePO4 (αLFP). However, the new phase ß-LiFePO4 (ßLFP), which can be transformed from αLFP under high temperature and pressure, is originally almost electrochemically inactive with no capacity for Li-ion battery, because the Li-ions are stored in the tetrahedral [LiO4] with very high activation barrier for migration and the one-dimensional (1D) migration channels for Li-ion diffusion in αLFP disappear, while the Fe ions in the ß-phase are oriented similar to the 1D arrangement instead. In this work, using experimental studies combined with density functional theory calculations, we demonstrate that ßLFP can be activated with creation of effective paths of Li-ion migration by optimized disordering. Thus, the new phase of ßLFP cathode achieved a capacity of 128 mAh g(-1) at a rate of 0.1 C (1C = 170 mA g(-1)) with extraordinary cycling performance that 94.5% of the initial capacity retains after 1000 cycles at 1 C. The activation mechanism can be attributed to that the induced disorder (such as FeLiLiFe antisite defects, crystal distortion, and amorphous domains) creates new lithium migration passages, which free the captive stored lithium atoms and facilitate their intercalation/deintercalation from the cathode. Such materials activated by disorder are promising candidate cathodes for lithium batteries, and the related mechanism of storage and effective migration of Li-ions also provides new clues for future design of disordered-electrode materials with high capacity and high energy density.

8.
Nano Lett ; 15(8): 5590-6, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26182195

RESUMO

Transition metal oxide materials Li(NixMnyCoz)O2 (NMC) based on layered structures are expected to replace LiFePO4 in automotive Li-ion batteries because of their higher specific capacity and operating potential. However, the actual usable capacity is much lower than the promised theoretical value [Uchaker, E.; Cao, G. Nano Today 2014, 9, 499-524; Tarascon, J.-M.; Armand, M. Nature 2001, 414, 359-367], in addition to the often poor cycling performance and the first-cycle Coulombic efficiency, for which Mn(II)-dissolution, its immobilization in solid electrolyte interface (SEI), oxidation of electrolytes by Ni, and other parasitic process thereat have been held responsible [Zhan, C., et al. Nat. Commun. 2013, 4, 2437; Wang, L., et al. J. Solid State Electrochem. 2009, 13, 1157-1164; Lin, F., et al. Nat. Commun. 2014, 5, 4529]. Previously, we reported a composite Li(Ni0.5Mn0.3Co0.2)O2 (NMC532) depolarized by the embedded carbon nanotube (CNT) and achieved capacity close to the theoretical limit [Wu, Z., et al. Nano. Lett. 2014, 14, 4700-4706]; unfortunately, this high capacity failed to be maintained in long-term cycling due to the degrading contacts between the active ingredient and CNT network. On the basis of that NMC532/CNT composite, the present work proposes a unique "prelithiation process", which brought the cathode to low potentials before regular cycling and led to an interphase that is normally formed only on anode surfaces. The complete coverage of cathode surface by this ∼40 nm thick interphase effectively prevented Mn(II) dissolution and minimized the side reactions of Ni, Co, and Mn at the NMC interface during the subsequent cycling process. More importantly, such a "prelithiation" process activated a structure containing two Li layers near the surface of NMC532 particles, as verified by XRD and first principle calculation. Hence, a new cathode material of both high capacity with depolarized structure and excellent cycling performance was generated. This new structure can be incorporated in essentially all the NMC-based layered cathode materials, providing us with an effective tool to tailor-design future new cathode materials for lithium batteries.

9.
Nano Lett ; 15(9): 6102-9, 2015 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-26305572

RESUMO

LiFePO4 has long been held as one of the most promising battery cathode for its high energy storage capacity. Meanwhile, although extensive studies have been conducted on the interfacial chemistries in Li-ion batteries,1-3 little is known on the atomic level about the solid-liquid interface of LiFePO4/electrolyte. Here, we report battery cathode consisted with nanosized LiFePO4 particles in aqueous electrolyte with an high charging and discharging rate of 600 C (3600/600 = 6 s charge time, 1 C = 170 mAh g(-1)) reaching 72 mAh g(-1) energy storage (42% of the theoretical capacity). By contrast, the accessible capacity sharply decreases to 20 mAh g(-1) at 200 C in organic electrolyte. After a comprehensive electrochemistry tests and ab initio calculations of the LiFePO4-H2O and LiFePO4-EC (ethylene carbonate) systems, we identified the transient formation of a Janus hydrated interface in the LiFePO4-H2O system, where the truncated symmetry of solid LiFePO4 surface is compensated by the chemisorbed H2O molecules, forming a half-solid (LiFePO4) and half-liquid (H2O) amphiphilic coordination environment that eases the Li desolvation process near the surface, which makes a fast Li-ion transport across the solid/liquid interfaces possible.

10.
Adv Mater ; 36(6): e2305748, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37849022

RESUMO

The interfacial compatibility between cathodes and sulfide solid-electrolytes (SEs) is a critical limiting factor of electrochemical performance in all-solid-state lithium-ion batteries (ASSLBs). This work presents a gas-solid interface reduction reaction (GSIRR), aiming to mitigate the reactivity of surface oxygen by inducing a surface reconstruction layer (SRL) . The application of a SRL, CoO/Li2 CO3 , onto LiCoO2 (LCO) cathode results in impressive outcomes, including high capacity (149.7 mAh g-1 ), remarkable cyclability (retention of 84.63% over 400 cycles at 0.2 C), outstanding rate capability (86.1 mAh g-1 at 2 C), and exceptional stability in high-loading cathode (28.97 and 23.45 mg cm-2 ) within ASSLBs. Furthermore, the SRL CoO/Li2 CO3 enhances the interfacial stability between LCO and Li10 GeP2 S12 as well as Li3 PS4 SEs. Significantly, the experiments suggest that the GSIRR mechanism can be broadly applied, not only to LCO cathodes but also to LiNi0.8 Co0.1 Mn0.1 O2 cathodes and other reducing gases such as H2 S and CO, indicating its practical universality. This study highlights the significant influence of the surface chemistry of the oxide cathode on interfacial compatibility, and introduces a surface reconstruction strategy based on the GSIRR process as a promising avenue for designing enhanced ASSLBs.

11.
Sci Adv ; 10(21): eadn4441, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38781334

RESUMO

Traditional cathode chemistry of Li-ion batteries relies on the transport of Li-ions within the solid structures, with the transition metal ions and anions acting as the static components. Here, we demonstrate that a solid solution of F- and PO43- facilitates the reversible conversion of a fine mixture of iron powder, LiF, and Li3PO4 into iron salts. Notably, in its fully lithiated state, we use commercial iron metal powder in this cathode, departing from electrodes that begin with iron salts, such as FeF3. Our results show that Fe-cations and anions of F- and PO43- act as charge carriers in addition to Li-ions during the conversion from iron metal to a solid solution of iron salts. This composite electrode delivers a reversible capacity of up to 368 mAh/g and a specific energy of 940 Wh/kg. Our study underscores the potential of amorphous composites comprising lithium salts as high-energy battery electrodes.

12.
Adv Mater ; 35(22): e2207904, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36944045

RESUMO

Controllable anionic redox for a transformational increase in the energy density is the pursuit of next generation Li-ion battery cathode materials. Its activation mechanism is coupled with the local coordination environment around O, which posts experimental challenges for control. Here, the tuning capability of anionic redox is shown by varying O local environment via experimentally controlling the density of stacking faults in Li2 MnO3 , the parent compound of Li-rich oxides. By combining computational analysis and spectroscopic study, it is quantitatively revealed that more stacking faults can trigger smaller LiOLi bond angles and larger LiO bond distance in local Li-rich environments and subsequently activate oxygen redox reactivity, which in turn enhances the reactivity of Mn upon the following reduction process. This study highlights the critical role of local structure environment in tuning the anionic reactivity, which provides guidance in designing high-capacity layered cathodes by appropriately adjusting stacking faults.

13.
Adv Mater ; 35(47): e2302595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37604112

RESUMO

Li2 MnO3 has been contemplated as a high-capacity cathode candidate for Li-ion batteries; however, it evolves oxygen during battery charging under ambient conditions, which hinders a reversible reaction. However, it is unclear if this irreversible process still holds under subambient conditions. Here, the low-temperature electrochemical properties of Li2 MnO3 in an aqueous LiCl electrolyte are evaluated and a reversible discharge capacity of 302 mAh g-1 at a potential of 1.0 V versus Ag/AgCl at -78 °C with good rate capability and stable cycling performance, in sharp contrast to the findings in a typical Li2 MnO3 cell cycled at room temperature, is observed. However, the results reveal that the capacity does not originate from the reversible oxygen oxidation in Li2 MnO3 but the reversible Cl2 (l)/Cl- (aq.) redox from the electrolyte. The results demonstrate the good catalytic properties of Li2 MnO3 to promote the Cl2 /Cl- redox at low temperatures.

14.
Chem Sci ; 14(43): 12219-12230, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37969610

RESUMO

The solid-electrolyte-interphase (SEI) plays a critical role in lithium-ion batteries (LIBs) because of its important influence on electrochemical performance, such as cycle stability, coulombic efficiency, etc. Although LiOH has been recognized as a key component of the SEI, its influence on the SEI and electrochemical performance has not been well clarified due to the difficulty in precisely controlling the LiOH content and characterize the detailed interface reactions. Here, a gradual change of LiOH content is realized by different reduction schemes among Co(OH)2, CoOOH and CoO. With reduced Co nanoparticles as magnetic "probes", SEI characterization is achieved by operando magnetometry. By combining comprehensive characterization and theoretical calculations, it is verified that LiOH leads to a composition transformation from lithium ethylene di-carbonate (LEDC) to lithium ethylene mono-carbonate (LEMC) in the SEI and ultimately results in capacity decay. This work unfolds the detailed SEI reaction scenario involving LiOH, provides new insights into the influence of SEI composition, and has value for the co-development between the electrode materials and electrolyte.

15.
ACS Appl Mater Interfaces ; 13(38): 45488-45495, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34529403

RESUMO

Investigation of Li metal and ionic compounds through experimental and theoretical spectroscopy has been of tremendous interest due to their prospective applications in Li-metal and Li-ion batteries. Li K-edge soft X-ray absorption spectroscopy (sXAS) provides the most direct spectroscopic characterization; unfortunately, due to the low core-level energy and the highly reactive surface, Li-K sXAS of Li metal has been extremely challenging, as evidenced by many controversial reports. Here, through controlled and ultra-high energy resolution experiments of two kinds of in situ prepared samples, we report the intrinsic Li-K sXAS of Li-metal that displays a prominent leading peak that has not been revealed before. Furthermore, theoretical simulations show that, due to the low number of valence electrons in Li, the Li-K sXAS is strongly affected by the response of the valence electrons to the core hole. We successfully reproduce the Li-K sXAS by state-of-the-art calculations with considerations of a number of relevant parameters such as temperature, energy resolution, and, especially, contributions from transitions which are forbidden in the single-particle treatment. Such a comparative experimental and theoretical investigation is further extended to a series of Li ionic compounds, which highlight the importance of considering the total and single-particle energies for obtaining an accurate alignment of the spectra. Our work provides the first reliable Li-K sXAS of the Li metal surface with advanced theoretical calculations. The experimental and theoretical results provide a critical benchmark for studying Li chemistry in both metallic and ionic states.

16.
Nat Commun ; 12(1): 2348, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33879797

RESUMO

The dependence on lithium-ion batteries leads to a pressing demand for advanced cathode materials. We demonstrate a new concept of layered-rocksalt intergrown structure that harnesses the combined figures of merit from each phase, including high capacity of layered and rocksalt phases, good kinetics of layered oxide and structural advantage of rocksalt. Based on this concept, lithium nickel ruthenium oxide of a main layered structure (R[Formula: see text]m) with intergrown rocksalt (Fm[Formula: see text]m) is developed, which delivers a high capacity with good rate performance. The interwoven rocksalt structure successfully prevents the anisotropic structural change that is typical for layered oxide, enabling a nearly zero-strain operation upon high-capacity cycling. Furthermore, a design principle is successfully extrapolated and experimentally verified in a series of compositions. Here, we show the success of such layered-rocksalt intergrown structure exemplifies a new battery electrode design concept and opens up a vast space of compositions to develop high-performance intergrown cathode materials.

17.
J Phys Chem Lett ; 11(7): 2618-2623, 2020 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-32154725

RESUMO

The evolving oxygen state plays key roles in the performance and stability of high-energy batteries involving oxygen redox reactions. Here, high-efficiency full energy range O-K mapping of resonant inelastic X-ray scattering (mRIXS) was collected from O2 (O0) and CO2 (O2- with strong covalency) molecules and compared directly with Li2O2 (O-) and the oxidized oxygen state in representative Na/Li-ion battery electrodes. Our results confirm again that the critical mRIXS feature around the 523.7 eV emission energy is from intrinsically oxidized oxygen, but not from the highly covalent oxygen state (CO2). The comparison of the mRIXS profile of the four different oxygen states, i.e., O2-, O-, On- (0 < n < 2), and O0, reveals that oxygen redox states in batteries have distinct widths and positions along the excitation energy compared with Li2O2 and O2. The nature of the oxidized oxygen state in oxide electrodes is thus beyond a simple molecular configuration of either peroxide or O2.

18.
Sci Adv ; 6(6): eaaw3871, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32083173

RESUMO

The oxygen redox (OR) activity is conventionally considered detrimental to the stability and kinetics of batteries. However, OR reactions are often confused by irreversible oxygen oxidation. Here, based on high-efficiency mapping of resonant inelastic x-ray scattering of both the transition metal and oxygen, we distinguish the lattice OR in Na0.6[Li0.2Mn0.8]O2 and compare it with Na2/3[Mg1/3Mn2/3]O2. Both systems display strong lattice OR activities but with distinct electrochemical stability. The comparison shows that the substantial capacity drop in Na0.6[Li0.2Mn0.8]O2 stems from non-lattice oxygen oxidations, and its voltage decay from an increasing Mn redox contribution upon cycling, contrasting those in Na2/3[Mg1/3Mn2/3]O2. We conclude that lattice OR is not the ringleader of the stability issue. Instead, irreversible oxygen oxidation and the changing cationic reactions lead to the capacity and voltage fade. We argue that lattice OR and other oxygen activities should/could be studied and treated separately to achieve viable OR-based electrodes.

19.
J Phys Chem Lett ; 9(21): 6262-6268, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30336046

RESUMO

The discovery of anion redox activity is promising for boosting the capacity of lithium ion battery (LIB) cathodes. However, fundamental understanding of the mechanisms that trigger the anionic redox is still lacking. Here, using hybrid density functional study combined with experimental soft X-ray absorption spectroscopy (sXAS) measurements, we unambiguously proved that Li(2- x)FeSiO4 performs sequent cationic and anionic redox activity through delithiation. Specifically, Fe2+ is oxidized to Fe3+ during the first Li ion extraction per formula unit (f.u.), while the second Li ion extraction triggered the oxygen redox exclusively. Cationic and anionic redox result in electron and hole polaron states, respectively, explaining the poor conductivity of Li(2- x)FeSiO4 noted by previous experiments. In contrast, other cathode materials in this family exhibit diversity of the redox process. Li2MnSiO4 shows double cationic redox (Mn2+-Mn4+) during the whole delithiation, while Li2CoSiO4 shows simultaneous cationic and anionic redox. The present finding not only provides new insights into the oxygen redox activity in polyanionic compounds for rechargeable batteries but also sheds light on the future design of high-capacity rechargeable batteries.

20.
Chem Commun (Camb) ; 54(7): 814-817, 2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29313043

RESUMO

We report the first direct experimental evidence of the dynamic behavior of the solid-electrolyte-interphase (SEI) on copper electrodes upon electrochemical cycling. Synchrotron-based soft X-ray absorption spectroscopy (sXAS) and time-of-flight secondary ion mass spectrometry (TOF-SIMS) consistently show that both the chemical composition and the thickness of the SEI change with electrochemical potential throughout the slow formation process. In particular, sXAS results show that the nascent carbonate species in SEI show redox reversibility and decompose during the delithiation (oxidation) process, which leads to a significant shrinking of the SEI thickness as confirmed by TOF-SIMS. Meanwhile, the carbonates also matures and become more and more inactive at every lithiation (reduction) process. These experimental observations reveal unambiguously that SEI formation is much more complicated than a simple and monotonous deposition of electrolyte decomposition product; instead, it could be an oscillating process with a breathing growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA