Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cytokine ; 172: 156411, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37918051

RESUMO

OBJECTIVE: Atherosclerosis is characterized by chronic inflammation in the vascular wall. Currently the violation of immune tolerance of innate immune cells is considered as a possible mechanism of chronification of inflammation. The aim of this study is to assess the inflammatory activity and tolerance of monocytes and macrophages in subclinical atherosclerosis. METHODS: A total of 55 individuals free from clinical manifestations of atherosclerosis-associated cardiovascular disease with a presence or absence of atherosclerotic plaques in the carotid arteries were included in this study. CD14+ monocytes were isolated from individuals' blood and stimulated with a single dose of lipopolysaccharide (LPS) on day 1 or with double doses of LPS on day 1 and day 6. The secretion of cytokines TNF, IL-1ß, IL-6, IL-8, IL-10 and CCL2 were evaluated using ELISA. RESULTS: Our findings demonstrate that macrophages derived from LPS-stimulated monocytes in individuals with subclinical atherosclerosis exhibited increased secretion of IL-6, IL-10 and CCL2, which was associated with intima-media thickness, body mass index, but not with individuals' age. Moreover, macrophages from individuals with atherosclerotic plaques exhibited impaired tolerance towards the second LPS stimulation manifested by elevated secretion of the chemoattractant CCL2. CONCLUSION: Increased secretion of these cytokines by macrophages may contribute to chronic local inflammation in the vascular wall by recruiting other immune cells.


Assuntos
Aterosclerose , Placa Aterosclerótica , Humanos , Monócitos , Lipopolissacarídeos/farmacologia , Interleucina-10 , Interleucina-6 , Espessura Intima-Media Carotídea , Macrófagos , Citocinas , Inflamação
2.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513289

RESUMO

Mammalian 15-lipoxygenases (ALOX15) are lipid peroxidizing enzymes that exhibit variable functionality in different cancer and inflammation models. The pathophysiological role of linoleic acid- and arachidonic acid-derived ALOX15 metabolites rendered this enzyme a target for pharmacological research. Several indole and imidazole derivatives inhibit the catalytic activity of rabbit ALOX15 in a substrate-specific manner, but the molecular basis for this allosteric inhibition remains unclear. Here, we attempt to define a common pharmacophore, which is critical for this allosteric inhibition. We found that substituted imidazoles induce weaker inhibitory effects when compared with the indole derivatives. In silico docking studies and molecular dynamics simulations using a dimeric allosteric enzyme model, in which the inhibitor occupies the substrate-binding pocket of one monomer, whereas the substrate fatty acid is bound at the catalytic center of another monomer within the ALOX15 dimer, indicated that chemical modification of the core pharmacophore alters the enzyme-inhibitor interactions, inducing a reduced inhibitory potency. In our dimeric ALOX15 model, the structural differences induced by inhibitor binding are translated to the hydrophobic dimerization cluster and affect the structures of enzyme-substrate complexes. These data are of particular importance since substrate-specific inhibition may contribute to elucidation of the putative roles of ALOX15 metabolites derived from different polyunsaturated fatty acids in mammalian pathophysiology.


Assuntos
Ácido Linoleico , Farmacóforo , Animais , Coelhos , Ácido Linoleico/metabolismo , Mamíferos/metabolismo , Ácidos Linoleicos/metabolismo , Araquidonato 15-Lipoxigenase/química , Imidazóis/farmacologia , Imidazóis/metabolismo
3.
Int J Mol Sci ; 23(3)2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35163076

RESUMO

For more than a decade, atherosclerosis has been one of the leading causes of death in developed countries. The issue of treatment and prevention of the disease is especially acute. Despite the huge amount of basic and clinical research, a significant number of gaps remain in our understanding of the pathogenesis of atherosclerosis, and only their closure will bring us closer to understanding the causes of the disease at the cellular and molecular levels and, accordingly, to the development of an effective treatment. One of the seemingly well-studied elements of atherogenesis is the mTOR signaling pathway. However, more and more new details are still being clarified. Therapeutic strategies associated with rapamycin have worked well in a number of different diseases, and there is every reason to believe that targeting components of the mTOR pathway may pay off in atherosclerosis as well.


Assuntos
Aterosclerose/tratamento farmacológico , Imunossupressores/uso terapêutico , Sirolimo/uso terapêutico , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo , Aterosclerose/metabolismo , Aterosclerose/patologia , Humanos , Transdução de Sinais
4.
Int J Mol Sci ; 23(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35628174

RESUMO

Several recent cardiovascular trials of SGLT 2 (sodium-glucose cotransporter 2) inhibitors revealed that they could reduce adverse cardiovascular events in patients with T2DM (type 2 diabetes mellitus). However, the exact molecular mechanism underlying the beneficial effects that SGLT2 inhibitors have on the cardiovascular system is still unknown. In this review, we focus on the molecular mechanisms of the mitochondria-mediated beneficial effects of SGLT2 inhibitors on the cardiovascular system. The application of SGLT2 inhibitors ameliorates mitochondrial dysfunction, dynamics, bioenergetics, and ion homeostasis and reduces the production of mitochondrial reactive oxygen species, which results in cardioprotective effects. Herein, we present a comprehensive overview of the impact of SGLT2 inhibitors on mitochondria and highlight the potential application of these medications to treat both T2DM and cardiovascular diseases.


Assuntos
Sistema Cardiovascular , Diabetes Mellitus Tipo 2 , Inibidores do Transportador 2 de Sódio-Glicose , Sistema Cardiovascular/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Humanos , Mitocôndrias , Sódio/metabolismo , Inibidores do Transportador 2 de Sódio-Glicose/farmacologia , Inibidores do Transportador 2 de Sódio-Glicose/uso terapêutico
5.
Int J Mol Sci ; 23(3)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35163247

RESUMO

Ageing is an unavoidable multi-factorial process, characterised by a gradual decrease in physiological functionality and increasing vulnerability of the organism to environmental factors and pathogens, ending, eventually, in death. One of the most elaborated ageing theories implies a direct connection between ROS-mediated mtDNA damage and mutations. In this review, we focus on the role of mitochondrial metabolism, mitochondria generated ROS, mitochondrial dynamics and mitophagy in normal ageing and pathological conditions, such as inflammation. Also, a chronic form of inflammation, which could change the long-term status of the immune system in an age-dependent way, is discussed. Finally, the role of inflammaging in the most common neurodegenerative diseases, such as Alzheimer's and Parkinson's, is also discussed.


Assuntos
DNA Mitocondrial/genética , Inflamação/genética , Mitocôndrias/genética , Mitofagia/genética , Mutação/genética , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo
6.
Int J Mol Sci ; 23(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35008887

RESUMO

Thyroid cancer (TC) is the most common type of endocrine malignancy. Tumour formation, progression, and metastasis greatly depend on the efficacy of mitochondria-primarily, the regulation of mitochondria-mediated apoptosis, Ca2+ homeostasis, dynamics, energy production, and associated reactive oxygen species generation. Recent studies have successfully confirmed the mitochondrial aetiology of thyroid carcinogenesis. In this review, we focus on the recent progress in understanding the molecular mechanisms of thyroid cancer relating to altered mitochondrial metabolism. We also discuss the repurposing of known drugs and the induction of mitochondria-mediated apoptosis as a new trend in the development of anti-TC therapy.


Assuntos
Carcinogênese/metabolismo , Mitocôndrias , Mitofagia/efeitos dos fármacos , Neoplasias da Glândula Tireoide , Apoptose , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo
7.
Int J Mol Sci ; 22(6)2021 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-33807076

RESUMO

Arachidonic acid lipoxygenases (ALOXs) have been suggested to function as monomeric enzymes, but more recent data on rabbit ALOX15 indicated that there is a dynamic monomer-dimer equilibrium in aqueous solution. In the presence of an active site ligand (the ALOX15 inhibitor RS7) rabbit ALOX15 was crystalized as heterodimer and the X-ray coordinates of the two monomers within the dimer exhibit subtle structural differences. Using native polyacrylamide electrophoresis, we here observed that highly purified and predominantly monomeric rabbit ALOX15 and human ALOX15B are present in two conformers with distinct electrophoretic mobilities. In silico docking studies, molecular dynamics simulations, site directed mutagenesis experiments and kinetic measurements suggested that in aqueous solutions the two enzymes exhibit motional flexibility, which may impact the enzymatic properties.


Assuntos
Araquidonato 15-Lipoxigenase/química , Araquidonato 15-Lipoxigenase/metabolismo , Modelos Moleculares , Conformação Proteica , Substituição de Aminoácidos , Animais , Catálise , Humanos , Isoenzimas , Cinética , Mutação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Coelhos
8.
J Biomed Res ; : 1-14, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38808553

RESUMO

Atherosclerosis poses a significant and widespread problem at the population level. Consequently, there is a pressing need to develop effective methods to reduce the risk associated with this condition, which holds a prominent position in cardiology research. The primary manifestation of atherosclerosis involves plaque formation on the walls of coronary arteries. These plaques not only disrupt blood flow but also raise the likelihood of thrombosis and subsequent cardiovascular events. Unfortunately, atherosclerosis itself is usually asymptomatic, resulting in challenges with diagnosis and a delayed initiation of treatment. Hence, strategies focusing on the regression of existing plaques within blood vessels play a crucial role. The present review encompasses comprehensive data on the regression of coronary atherosclerotic plaques, examining both the underlying mechanisms and a range of regression strategies, encompassing lifestyle modifications to medical interventions.

9.
Curr Med Chem ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38441018

RESUMO

BACKGROUND AND AIMS: The role of mitophagy in atherosclerosis has been extensively studied during the last few years. It was shown that mitophagy is involved in the regulation of macrophages, which are important players as immune cells in atherosclerosis development. In this study, we investigated the relationship between mitophagy and response to inflammatory stimulation of macrophage-like cells. Six cybrid cell lines with normal mitophagy, that is, increasing in response to stimulation, and 7 lines with defective mitophagy not responding to stimulation were obtained. The objective of the study was to compare the nature of the inflammatory response in normal and defective mitophagy in order to elucidate the role of mitophagy defects in inflammation. METHODS: We used cytoplasmic hybrids (cybrids) as cellular models, created using mitochondrial DNA from different atherosclerosis patients. Mitophagy was stimulated by carbonyl cyanide m-chlorophenyl hydrazone (CCCP) and assessed as the degree of colocalization of mitochondria with lysosomes using confocal microscopy. Western blotting methods were used for the determination of proteins involved in the exact mechanism of mitophagy. Experiments with stimulation of mitophagy show a high correlation between these two approaches (microscopy and blotting). The pro-inflammatory response of cybrids was stimulated with bacterial lipopolysaccharide (LPS). The extent of the inflammatory response was assessed by the secretion of cytokines CCL2, IL8, IL6, IL1ß, and TNF measured by ELISA. RESULTS: Basal level of secretion of cytokines CCL2, IL8 and TNF was 1.5-2 times higher in cultures of cybrids with defective mitophagy compared to cells with normal mitophagy. This suggests a persistently elevated inflammatory response in cells with defective mitophagy, even in the absence of an inflammatory stimulus. Such cells in the tissue will constantly recruit other immune cells, which is characteristic of macrophages derived from monocytes circulating in the blood of patients with atherosclerosis. We observed significant differences in the degree and type of response to inflammatory activation in cybrids with defective mitophagy. These differences were not so much quantitative as they were dramatically qualitative. Compared with cells with normal mitophagy, in cells with defective mitophagy, the relative (to basal) secretion of IL8, IL6 and IL1b increased after the second LPS activation. This indicates a possible lack of tolerance to inflammatory activation in cells with defective mitophagy, since typically, re-activation reveals a smaller pro-inflammatory cytokine response, allowing the inflammatory process to resolve. In cells with normal mitophagy, exactly this normal (tolerant) inflammatory reaction was observed. CONCLUSION: Data on the involvement of mitophagy, including defective mitophagy, in disturbances of the inflammatory response in sepsis, viral infections, autoimmune diseases and other pathologies have previously been reported. In this work, we studied the role of defective mitophagy in non-infectious chronic inflammatory diseases using the example of atherosclerosis. We showed a dramatic disruption of the inflammatory response associated with defective mitophagy. Compared with cybrids with normal mitophagy, in cybrids with defective mitophagy, the secretion of all studied cytokines changed significantly both quantitatively and qualitatively. In particular, the secretion of 3 of 5 cytokines demonstrated an intolerant inflammatory response manifested by increased secretion after repeated inflammatory stimulation. Such an intolerant reaction likely indicates a significant disruption of the pro-inflammatory response of macrophages, which can contribute to the chronification of inflammation. Elucidating the mechanisms of chronification of inflammation is extremely important for the search for fundamentally new pharmacological targets and the development of drugs for the prevention and treatment of chronic inflammatory diseases, including atherosclerosis and diseases characteristic of inflammation. Such diseases account for up to 80% of morbidity and mortality.

10.
J Lipid Atheroscler ; 13(2): 166-183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38826184

RESUMO

Objective: The aim of this study was to evaluate the effect of the m.15059G>A mitochondrial nonsense mutation on cellular functions related to atherosclerosis, such as lipidosis, pro-inflammatory response, and mitophagy. Heteroplasmic mutations have been proposed as a potential cause of mitochondrial dysfunction, potentially disrupting the innate immune response and contributing to the chronic inflammation associated with atherosclerosis. Methods: The human monocytic cell line THP-1 and cytoplasmic hybrid cell line TC-HSMAM1 were used. An original approach based on the CRISPR/Cas9 system was developed and used to eliminate mitochondrial DNA (mtDNA) copies carrying the m.15059G>A mutation in the MT-CYB gene. The expression levels of genes encoding enzymes related to cholesterol metabolism were analyzed using quantitative polymerase chain reaction. Pro-inflammatory cytokine secretion was assessed using enzyme-linked immunosorbent assays. Mitophagy in cells was detected using confocal microscopy. Results: In contrast to intact TC-HSMAM1 cybrids, Cas9-TC-HSMAM1 cells exhibited a decrease in fatty acid synthase (FASN) gene expression following incubation with atherogenic low-density lipoprotein. TC-HSMAM1 cybrids were found to have defective mitophagy and an inability to downregulate the production of pro-inflammatory cytokines (to establish immune tolerance) upon repeated lipopolysaccharide stimulation. Removal of mtDNA harboring the m.15059G>A mutation resulted in the re-establishment of immune tolerance and the activation of mitophagy in the cells under investigation. Conclusion: The m.15059G>A mutation was found to be associated with defective mitophagy, immune tolerance, and impaired metabolism of intracellular lipids due to upregulation of FASN in monocytes and macrophages.

11.
Curr Med Chem ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39279121

RESUMO

Аims: This research aimed to study the features of gene regulation of the inflammatory response in cells carrying mitochondrial mutations associated with atherosclerosis. BACKGROUND: Inflammation plays an important, if not decisive, role in the occurrence of atherosclerotic lesions and then accompanies it throughout its further development. Thus, atherogenesis is a chronic inflammatory process. Chronification of inflammation is a consequence of disruption of the normal inflammatory response at the cell level of the vascular wall. OBJECTIVES: In this study, we used cytoplasmic hybrids or cybrids carrying atherosclerosis-associated mitochondrial mutations to study gene regulation of inflammatory response. The main goal of the study was to identify the key genes responsible for the impaired inflammatory response revealed for some cybrids. METHODS: Inflammatory stimulation of cybrids was induced with bacterial lipopolysaccharide, and assessed through secretion of pro-inflammatory cytokines CCL2, IL8, IL6, IL1b. A transcriptome analysis was performed to identify the key genes (master regulators) in the normal (tolerant) and intolerant response of cybrid cells. RESULTS: Normal inflammatory response after re-stimulation elicited a much smaller secretion of pro-inflammatory cytokines. In an intolerant response, the level of secretion upon re-stimulation was the same or even higher than after the first stimulation. Normal and intolerant responses differed significantly both in terms of the number of signaling pathways involved and qualitatively, since the signaling pathways for normal and intolerant responses are completely different. Master regulators controlling normal and intolerant inflammatory response were identified. For a normal response to the first inflammatory stimulation, no common master up-regulators and 3 master down-regulators were identified. The reverse situation was observed with the intolerant inflammatory response: 6 master up-regulators, and no master down regulators were identified. After the second inflammatory stimulation, no master regulator common to all studied cytokines was found. Thus, key genes involved in the development of intolerant inflammatory response have been identified. In addition, other key genes were identified that were initially associated with an intolerant inflammatory response and thus determine disorders of the inflammatory reaction leading to chronification of inflammation. CONCLUSION: We identified disturbances in gene associated with the development of intolerant immune response that may be relevant to atherosclerosis. Key genes responsible for the chronification of inflammation were discovered.

12.
Med Chem ; 18(3): 406-416, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34097594

RESUMO

BACKGROUND: RS75091 is a cinnamic acid derivative that has been used for the crystallization of the rabbit ALOX15-inhibitor complex. The atomic coordinates of the resolved ALOX15- inhibitor complex were later on used to define the binding sites of other mammalian lipoxygenase orthologs, for which no direct structural data with ligand has been reported so far. INTRODUCTION: The putative binding pocket of the human ALOX5 was reconstructed on the basis of its structural alignment with rabbit ALOX15-RS75091 inhibitor. However, considering the possible conformational changes the enzyme may undergo in solution, it remains unclear whether the existing models adequately mirror the architecture of ALOX5 active site. METHODS: In this study, we prepared a series of RS75091 derivatives using a Sonogashira coupling reaction of regioisomeric bromocinnamates with protected acetylenic alcohols and tested their inhibitory properties on rabbit ALOX15. RESULTS: A bulky pentafluorophenyl moiety linked to either ortho- or metha-ethynylcinnamates via aliphatic spacer does not significantly impair the inhibitory properties of RS75091. CONCLUSION: Hydroxylated 2- and 3-alkynylcinnamates may be suitable candidates for incorporation of an aromatic linker group like tetrafluorophenylazides for photoaffinity labeling assays.


Assuntos
Inibidores de Lipoxigenase , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores de Lipoxigenase/farmacologia , Coelhos , Especificidade por Substrato
13.
Biomedicines ; 10(4)2022 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-35453534

RESUMO

It is known that the development of foci of chronic inflammation usually accompanies body aging. In these foci, senescent cells appear with a pro-inflammatory phenotype that helps maintain inflammation. Their removal with the help of senolytics significantly improves the general condition of the body and, according to many indicators, contributes to rejuvenation. The cells of the immune system participate in the initiation, development, and resolution of inflammation. With age, the human body accumulates mutations, including the cells of the bone marrow, giving rise to the cells of the immune system. We assume that a number of such mutations formed with age can lead to the appearance of "naive" cells with an initially pro-inflammatory phenotype, the migration of which to preexisting foci of inflammation contributes not to the resolution of inflammation but its chronicity. One of such cell variants are monocytes carrying mitochondrial mutations, which may be responsible for comorbidity and deterioration in the prognosis of the course of pathologies associated with aging, such as atherosclerosis, arthritis, osteoporosis, and neurodegenerative diseases.

14.
Metabolites ; 12(7)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35888759

RESUMO

Rheumatoid arthritis (RA) is a progressive autoimmune disease that affects the joints. It has been proven that, with the development of RA, there are changes in the metabolism of cells located in the focus of inflammation. In this article, we describe the connection between metabolism and inflammation in the context of rheumatoid arthritis. We consider in detail the changes in metabolic processes and their subsequent immunomodulatory effects. In particular, we consider how changes in mitochondrial functioning lead to the modulation of metabolism in rheumatoid arthritis. We also describe the main features of the metabolism in cells present in the synovial membrane during inflammation, and we discuss possible targets for the therapy of rheumatoid arthritis.

15.
J Med Chem ; 65(3): 1979-1995, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35073698

RESUMO

Here, we describe the first systematic study on the mechanism of substrate-selective inhibition of mammalian ALOX15 orthologs. For this purpose, we prepared a series of N-substituted 5-(1H-indol-2-yl)anilines and found that (N-(5-(1H-indol-2-yl)-2-methoxyphenyl)sulfamoyl)carbamates and their monofluorinated analogues are potent and selective inhibitors of the linoleate oxygenase activity of rabbit and human ALOX15. Introduction of a 2-methoxyaniline moiety into the core pharmacophore plays a crucial role in substrate-selective inhibition of ALOX15-catalyzed oxygenation of linoleic acid at submicromolar concentrations without affecting arachidonic acid oxygenation. Steady-state kinetics, mutagenesis studies, and molecular dynamics (MD) simulations suggested an allosteric mechanism of action. Using a dimer model of ALOX15, our MD simulations suggest that the binding of the inhibitor at the active site of one monomer induces conformational alterations in the other monomer so that the formation of a productive enzyme-linoleic acid complex is energetically compromised.


Assuntos
Regulação Alostérica/efeitos dos fármacos , Compostos de Anilina/química , Araquidonato 15-Lipoxigenase/química , Inibidores de Lipoxigenase/farmacologia , Compostos de Anilina/metabolismo , Compostos de Anilina/farmacologia , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Sítios de Ligação , Domínio Catalítico , Desenho de Fármacos , Humanos , Indóis/química , Cinética , Inibidores de Lipoxigenase/química , Inibidores de Lipoxigenase/metabolismo , Camundongos , Simulação de Acoplamento Molecular , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Relação Estrutura-Atividade , Especificidade por Substrato
16.
Heliyon ; 6(12): e05809, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33409390

RESUMO

The aim of the study was to characterize the pattern of transcript isoforms of HTR2A exon II in lymphocytes of the blood as peripheral biomarkers of schizophrenia development and the effectiveness of antipsychotic therapy. We primarily observed an increase in mRNA levels and elevation of alternative variants in a sample of drug-naïve schizophrenic patients compared to the control group. There was no association of the expression level of HTR2A transcript isoforms with the effectiveness of the antipsychotic therapy. Antipsychotic-induced akathisia was associated with a significant reduction in the mRNA levels of the studied isoforms. In summary, our results suggest that levels of HTR2A exon II transcript isoforms are upregulated in patients with schizophrenia, but at the same time, elevated expression level of the studied HTR2A transcripts is associated with fewer side effects of the therapy.

17.
Artigo em Inglês | MEDLINE | ID: mdl-32151768

RESUMO

His596 of human ALOX12 has been suggested to interact with the COO--group of arachidonic acid during ALOX catalysis. In mammalian ALOX15 orthologs Gln596 occupies this position and this amino acid exchange might contribute to the functional differences between the two ALOX-isoforms. To explore the role of Gln596 for ALOX15 functionality we mutated this amino acid to different residues in rabbit and human ALOX15 and investigated the impact of these mutations on structural, catalytic and allosteric enzyme properties. To shed light on the molecular basis of the observed functional alterations we performed in silico substrate docking studies and molecular dynamics simulations and also explored the impact of Gln596 exchange on the protein structure. The combined theoretical and experimental data suggest that Gln596 may not directly interact with the COO--group of arachidonic acid. In contrast, mutations at Gln596 destabilize the secondary and tertiary structure of ALOX15 orthologs, which may be related to a disturbance of the electrostatic interaction network with other amino acids in the immediate surrounding. Moreover, our MD-simulations suggest that the geometry of the dimer interface depends on the structure of substrate bound inside the substrate-binding pocket and that Gln596Ala exchange impairs the allosteric properties of the enzyme. Taken together, these data indicate the structural and functional importance of Gln596 for ALOX15 catalysis.


Assuntos
Sítio Alostérico , Araquidonato 15-Lipoxigenase/química , Simulação de Acoplamento Molecular , Substituição de Aminoácidos , Animais , Araquidonato 15-Lipoxigenase/genética , Araquidonato 15-Lipoxigenase/metabolismo , Ácido Araquidônico/química , Ácido Araquidônico/metabolismo , Estabilidade Enzimática , Glutamina/química , Glutamina/genética , Humanos , Ligação Proteica , Conformação Proteica em alfa-Hélice , Coelhos , Especificidade por Substrato
18.
Int J Surg Pathol ; 25(6): 563-566, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28449606

RESUMO

Only 28 cases of pseudomyxoma peritonei (PMP) arising from urachal neoplasms have been reported. We report one example of this extremely rare disease with KRAS mutational status in its spectrum of pathology. A 45-year-old woman presented with urachal frankly invasive mucinous cystadenocarcinoma confined to the dome of the bladder, which clinically manifested as PMP and was not detected at the first surgery. The primary tumour was revealed 6 months later because of its recurrence as PMP. Microscopic investigation revealed tubular adenoma and cystadenocarcinoma communicating with the bladder lumen and transitioning from the urachal urothelium to the mucinous epithelium. A urachal remnant was identified near the neoplasm. On immunohistochemistry, the tumour proved positive for CK7, CK20, CEA, and CDX2. Staining for ß-catenin revealed expression in both the cytoplasm and cell membrane. Mismatch repair protein expression was normal. Somatic KRAS-mutation (G12V) was revealed in tubular adenoma, cystadenocarcinoma, and mucinous carcinoma peritonei and may play an oncogenic role in the malignant transformation of urachal mucosa and the development of PMP.


Assuntos
Adenocarcinoma/patologia , Cistadenocarcinoma Mucinoso/patologia , Neoplasias Peritoneais/etiologia , Pseudomixoma Peritoneal/etiologia , Neoplasias da Bexiga Urinária/patologia , Adenocarcinoma/complicações , Adenocarcinoma/genética , Cistadenocarcinoma Mucinoso/complicações , Cistadenocarcinoma Mucinoso/genética , Feminino , Humanos , Pessoa de Meia-Idade , Mutação , Neoplasias Peritoneais/patologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Pseudomixoma Peritoneal/patologia , Neoplasias da Bexiga Urinária/complicações , Neoplasias da Bexiga Urinária/genética
19.
J Mol Model ; 18(5): 1755-66, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-21833825

RESUMO

Stacking interaction is known to play an important role in protein folding, enzyme-substrate and ligand-receptor complex formation. It has been shown to make a contribution into the aromatic antagonists binding with glutamate ionotropic receptors (iGluRs), in particular, the complex of NMDA receptor NR1 subunit with the kynurenic acid (KYNA) derivatives. The specificity of KYNA binding to the glutamate receptors subtypes might partially result from the differences in stacking interaction. We have calculated the optimal geometry and binding energy of KYNA dimers with the four types of aromatic amino acid residues in Rattus and Drosophila ionotropic iGluR subunits. All ab initio quantum chemical calculations were performed taking into account electron correlations at MP2 and MP4 perturbation theory levels. We have also investigated the potential energy surfaces (PES) of stacking and hydrogen bonds (HBs) within the receptor binding site and calculated the free energy of the ligand-receptor complex formation. The energy of stacking interaction depends both on the size of aromatic moieties and the electrostatic effects. The distribution of charges was shown to determine the geometry of polar aromatic ring dimers. Presumably, stacking interaction is important at the first stage of ligand binding when HBs are weak. The freedom of ligand movements and rotation within receptor site provides the precise tuning of the HBs pattern, while the incorrect stacking binding prohibits the ligand-receptor complex formation.


Assuntos
Proteínas de Drosophila/química , Ácido Cinurênico/química , Subunidades Proteicas/química , Receptores Ionotrópicos de Glutamato/química , Animais , Sítios de Ligação , Drosophila melanogaster , Ligação de Hidrogênio , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Teoria Quântica , Ratos , Eletricidade Estática , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA