RESUMO
Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.
Assuntos
Di-Hidroxifenilalanina , Tirosina , Di-Hidroxifenilalanina/química , Tirosina/química , Colágeno/química , Oxirredução , Aminoácidos/metabolismoRESUMO
This report describes the application of cyanosulfurylide (CSY)-protected aspartatic acid building blocks in microwave-assisted synthesis of aggregation-prone protein domains. We present a synthesis of Fmoc-Asp(CSY)-OH on a multigram scale, as well as procedures for the microwave-assisted synthesis of CSY-protected peptides, and CSY cleavage in partially folded or aggregation-prone peptides.