RESUMO
Pediatric and young adult (YA) patients with acute myeloid leukemia (AML) who relapse after allogeneic hematopoietic cell transplantation (HCT) have an extremely poor prognosis. Standard salvage chemotherapy and donor lymphocyte infusions (DLIs) have little curative potential. Previous studies showed that natural killer (NK) cells can be stimulated ex vivo with interleukin-12 (IL-12), -15, and -18 to generate memory-like (ML) NK cells with enhanced antileukemia responses. We treated 9 pediatric/YA patients with post-HCT relapsed AML with donor ML NK cells in a phase 1 trial. Patients received fludarabine, cytarabine, and filgrastim followed 2 weeks later by infusion of donor lymphocytes and ML NK cells from the original HCT donor. ML NK cells were successfully generated from haploidentical and matched-related and -unrelated donors. After infusion, donor-derived ML NK cells expanded and maintained an ML multidimensional mass cytometry phenotype for >3 months. Furthermore, ML NK cells exhibited persistent functional responses as evidenced by leukemia-triggered interferon-γ production. After DLI and ML NK cell adoptive transfer, 4 of 8 evaluable patients achieved complete remission at day 28. Two patients maintained a durable remission for >3 months, with 1 patient in remission for >2 years. No significant toxicity was experienced. This study demonstrates that, in a compatible post-HCT immune environment, donor ML NK cells robustly expand and persist with potent antileukemic activity in the absence of exogenous cytokines. ML NK cells in combination with DLI present a novel immunotherapy platform for AML that has relapsed after allogeneic HCT. This trial was registered at https://clinicaltrials.gov as #NCT03068819.
Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Criança , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Células Matadoras Naturais , Leucemia Mieloide Aguda/terapia , Transplante Homólogo , Doadores não RelacionadosRESUMO
HYPOTHESIS: Diffusiophoresis of colloidal latex particles has been reported for molecular anions and cations of comparable size. In the present study, this phenomenon is observed for two types of charged colloids acting as multivalent electrolyte: (i) anionic charge-stabilised silica nanoparticles or (ii) minimally-charged sterically-stabilised diblock copolymer nanoparticles. EXPERIMENTS: Using a Hele-Shaw cell, a thin layer of relatively large latex particles is established within a sharp concentration gradient of nanoparticles by sequential filling with water, latex particles and nanoparticles. Asymmetric diffusion is observed, which provides strong evidence for diffusiophoresis. Quantification involves turbidity measurements from backlit images. FINDINGS: The latex particles diffuse across a concentration gradient of charged nanoparticles and the latex concentration front scales approximately with time1/2. Moreover, the latex particle flux is inversely proportional to the concentration of background salt, confirming electrostatically-driven motion. These observations are consistent with theory recently developed to account for diffusiophoretic motion driven by multivalent ions.
RESUMO
Pattern formation is a common occurrence in drying colloidal systems. The most common in droplets, is a ring distribution where the constituents have relocated to the edge, which is referred to as a coffee ring. This deposit is unfavourable in many manufacturing processes and is of fundamental interest. In this study, we present a model capable of predicting when a coffee ring will be observed in hard spherical particle systems. Ring profiles are found to be formed at low contact angles with the specific angle predicated upon the initial concentration of the suspension. Modelling results are in agreement with experiments using latex suspensions.
RESUMO
Hematopoietic stem cell transplantation (HCT) is a curative intervention in non-malignant disorders (NMD) that benefit from donor-derived hematopoiesis, immunity, and establishment of vital cells or enzyme systems. Stability or reversal of disease symptoms depends on adequacy and long-term stability of donor cell engraftment in the compartment of interest. Unlike hematologic malignancies where complete replacement with donor derived hematopoiesis is desirable for a cure, NMD manifestations can often be controlled in the presence of mixed chimerism. This allows for exploration of reduced intensity conditioning regimens that can limit organ toxicity, late effects, and increase tolerability especially in young recipients or those with a large burden of disease related morbidity. However, the levels of donor chimerism conducive to disease control vary between NMD, need to focus on the hematopoietic lineage necessary to correct individual disorders, and need to be assessed for stability over time, i.e., a whole lifespan. An enhanced ability to reject grafts due to recipient immune competence, alloimmunization, and autoimmunity add to the complexity of this balance making NMD a highly diverse group of unrelated disorders. The addition of donor factors such as stem cell source and Human-Leukocyte-Antigen match extend the complexity such that 'one size does not fit all'. In this perspective, we will discuss current knowledge of the role of chimerism and goals, approach to HCT, and emerging methods of boosting engraftment and graft function, and monitoring recommendations. We draw attention to knowledge gaps and areas of necessity for further research and research support.