Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Cell ; 139(2): 229-31, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19837027

RESUMO

Secreted Wnt morphogens mediate cell-cell communication, but the mechanism of Wnt transfer between cells is unknown. Korkut et al. (2009) report that the transmembrane protein Evi is a versatile carrier that guides Wingless to presynaptic terminals of motor neurons and then escorts it across the synaptic cleft. In postsynaptic muscles, Evi promotes Frizzled-2 trafficking.


Assuntos
Drosophila/metabolismo , Sinapses , Animais , Proteínas de Drosophila/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Transporte Proteico , Proteína Wnt1/metabolismo
2.
PLoS Genet ; 10(3): e1004209, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651716

RESUMO

The olfactory systems of insects are fundamental to all aspects of their behaviour, and insect olfactory receptor neurons (ORNs) exhibit exquisite specificity and sensitivity to a wide range of environmental cues. In Drosophila melanogaster, ORN responses are determined by three different receptor families, the odorant (Or), ionotropic-like (IR) and gustatory (Gr) receptors. However, the precise mechanisms of signalling by these different receptor families are not fully understood. Here we report the unexpected finding that the type 4 P-type ATPase phospholipid transporter dATP8B, the homologue of a protein associated with intrahepatic cholestasis and hearing loss in humans, is crucial for Drosophila olfactory responses. Mutations in dATP8B severely attenuate sensitivity of odorant detection specifically in Or-expressing ORNs, but do not affect responses mediated by IR or Gr receptors. Accordingly, we find dATP8B to be expressed in ORNs and localised to the dendritic membrane of the olfactory neurons where signal transduction occurs. Localisation of Or proteins to the dendrites is unaffected in dATP8B mutants, as is dendrite morphology, suggesting instead that dATP8B is critical for Or signalling. As dATP8B is a member of the phospholipid flippase family of ATPases, which function to determine asymmetry in phospholipid composition between the outer and inner leaflets of plasma membranes, our findings suggest a requirement for phospholipid asymmetry in the signalling of a specific family of chemoreceptor proteins.


Assuntos
Proteínas de Drosophila/genética , Neurônios Receptores Olfatórios/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Receptores Odorantes/genética , Olfato/genética , Animais , Células Quimiorreceptoras/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Neurônios Receptores Olfatórios/fisiologia , Proteínas de Transferência de Fosfolipídeos/metabolismo , Receptores Odorantes/metabolismo , Transdução de Sinais
3.
J Neurosci ; 35(14): 5754-71, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25855186

RESUMO

Mitochondria are dynamically transported in and out of neuronal processes to maintain neuronal excitability and synaptic function. In higher eukaryotes, the mitochondrial GTPase Miro binds Milton/TRAK adaptor proteins linking microtubule motors to mitochondria. Here we show that Drosophila Miro (dMiro), which has previously been shown to be required for kinesin-driven axonal transport, is also critically required for the dynein-driven distribution of mitochondria into dendrites. In addition, we used the loss-of-function mutations dMiroT25N and dMiroT460N to determine the significance of dMiro's N-terminal and C-terminal GTPase domains, respectively. Expression of dMiroT25N in the absence of endogenous dMiro caused premature lethality and arrested development at a pupal stage. dMiroT25N accumulated mitochondria in the soma of larval motor and sensory neurons, and prevented their kinesin-dependent and dynein-dependent distribution into axons and dendrites, respectively. dMiroT25N mutant mitochondria also were severely fragmented and exhibited reduced kinesin and dynein motility in axons. In contrast, dMiroT460N did not impair viability, mitochondrial size, or the distribution of mitochondria. However, dMiroT460N reduced dynein motility during retrograde mitochondrial transport in axons. Finally, we show that substitutions analogous to the constitutively active Ras-G12V mutation in dMiro's N-terminal and C-terminal GTPase domains cause neomorphic phenotypic effects that are likely unrelated to the normal function of each GTPase domain. Overall, our analysis indicates that dMiro's N-terminal GTPase domain is critically required for viability, mitochondrial size, and the distribution of mitochondria out of the neuronal soma regardless of the employed motor, likely by promoting the transition from a stationary to a motile state.


Assuntos
Transporte Axonal/genética , Dendritos/metabolismo , Proteínas de Drosophila/metabolismo , Mitocôndrias/metabolismo , Neurônios/ultraestrutura , Proteínas rho de Ligação ao GTP/fisiologia , Análise de Variância , Animais , Animais Geneticamente Modificados , Drosophila , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Dineínas/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peroxidase do Rábano Silvestre/metabolismo , Cinesinas/metabolismo , Larva , Neurônios/metabolismo , Mutação Puntual/genética , Rodaminas/metabolismo , Proteínas rho de Ligação ao GTP/química , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
4.
J Neurosci ; 30(5): 1869-81, 2010 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-20130196

RESUMO

Mitochondria accumulate within nerve terminals and support synaptic function, most notably through ATP production. They can also sequester Ca(2+) during nerve stimulation, but it is unknown whether this limits presynaptic Ca(2+) levels at physiological nerve firing rates. Similarly, it is unclear whether mitochondrial Ca(2+) sequestration differs between functionally different nerve terminals. We addressed these questions using a combination of synthetic and genetically encoded Ca(2+) indicators to examine cytosolic and mitochondrial Ca(2+) levels in presynaptic terminals of tonic (MN13-Ib) and phasic (MNSNb/d-Is) motor neurons in Drosophila, which, as we determined, fire during fictive locomotion at approximately 42 Hz and approximately 8 Hz, respectively. Mitochondrial Ca(2+) sequestration starts in both terminals at approximately 250 nM, exhibits a similar Ca(2+)-uptake affinity (approximately 410 nM), and does not require Ca(2+) release from the endoplasmic reticulum. Nonetheless, mitochondrial Ca(2+) uptake in type Is terminals is more responsive to low-frequency nerve stimulation and this is due to higher cytosolic Ca(2+) levels. Since type Ib terminals have a higher mitochondrial density than Is terminals, it seemed possible that greater mitochondrial Ca(2+) sequestration may be responsible for the lower cytosolic Ca(2+) levels in Ib terminals. However, genetic and pharmacological manipulations of mitochondrial Ca(2+) uptake did not significantly alter nerve-stimulated elevations in cytosolic Ca(2+) levels in either terminal type within physiologically relevant rates of stimulation. Our findings indicate that presynaptic mitochondria have a similar affinity for Ca(2+) in functionally different nerve terminals, but do not limit cytosolic Ca(2+) levels within the range of motor neuron firing rates in situ.


Assuntos
Cálcio/metabolismo , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Terminações Pré-Sinápticas/metabolismo , Animais , Drosophila , Larva , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Cálculos da Bexiga Urinária/metabolismo
5.
Small GTPases ; 12(5-6): 372-398, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33183150

RESUMO

Mitochondria and peroxisomes are highly dynamic, multifunctional organelles. Both perform key roles for cellular physiology and homoeostasis by mediating bioenergetics, biosynthesis, and/or signalling. To support cellular function, they must be properly distributed, of proper size, and be able to interact with other organelles. Accumulating evidence suggests that the small atypical GTPase Miro provides a central signalling node to coordinate mitochondrial as well as peroxisomal dynamics. In this review, I summarize our current understanding of Miro-dependent functions and molecular mechanisms underlying the proper distribution, size and function of mitochondria and peroxisomes.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Homeostase , Mitocôndrias/fisiologia , Dinâmica Mitocondrial , Peroxissomos/fisiologia , Animais , Humanos , Mitocôndrias/enzimologia , Peroxissomos/enzimologia , Transdução de Sinais
6.
Neuron ; 52(4): 569-71, 2006 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-17114040

RESUMO

Synaptic homeostasis is a phenomenon that prevents the nervous system from descending into chaos. In this issue of Neuron, Frank et al. overturn the notion that synaptic homeostasis at Drosophila NMJs is a slow developmental process. They report that postsynaptic changes are offset within minutes by a homeostatic increase in neurotransmitter release that requires the presynaptic Ca(2+) channel Cacophony.


Assuntos
Canais de Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Animais , Drosophila melanogaster/ultraestrutura , Homeostase/fisiologia , Junção Neuromuscular/ultraestrutura , Neurotransmissores/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Membranas Sinápticas/metabolismo , Fatores de Tempo
7.
J Neurosci ; 29(17): 5443-55, 2009 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-19403812

RESUMO

Microtubule-based transport of mitochondria into dendrites and axons is vital for sustaining neuronal function. Transport along microtubule tracks proceeds in a series of plus and minus end-directed movements that are facilitated by kinesin and dynein motors. How the opposing movements are controlled to achieve effective transport over large distances remains unclear. Previous studies showed that the conserved mitochondrial GTPase Miro is required for mitochondrial transport into axons and dendrites and serves as a Ca(2+) sensor that controls mitochondrial mobility. To directly examine Miro's significance for kinesin- and/or dynein-mediated mitochondrial motility, we live-imaged movements of GFP-tagged mitochondria in larval Drosophila motor axons upon genetic manipulations of Miro. Loss of Drosophila Miro (dMiro) reduced the effectiveness of both anterograde and retrograde mitochondrial transport by selectively impairing kinesin- or dynein-mediated movements, depending on the direction of net transport. Net anterogradely transported mitochondria exhibited reduced kinesin- but normal dynein-mediated movements. Net retrogradely transported mitochondria exhibited much shorter dynein-mediated movements, whereas kinesin-mediated movements were minimally affected. In both cases, the duration of short stationary phases increased proportionally. Overexpression (OE) of dMiro also impaired the effectiveness of mitochondrial transport. Finally, loss and OE of dMiro altered the length of mitochondria in axons through a mechanistically separate pathway. We suggest that dMiro promotes effective antero- and retrograde mitochondrial transport by extending the processivity of kinesin and dynein motors according to a mitochondrion's programmed direction of transport.


Assuntos
Transporte Axonal/fisiologia , Axônios/fisiologia , Proteínas de Drosophila/fisiologia , Mitocôndrias/fisiologia , Proteínas Mitocondriais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Animais Geneticamente Modificados , Drosophila , Dineínas/fisiologia , Cinesinas/antagonistas & inibidores , Cinesinas/fisiologia
8.
J Neurogenet ; 24(3): 120-32, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20583963

RESUMO

Cysteine-string protein (CSP), a member of the DnaJ/Hsp40 family of cochaperones, is critical for maintaining neurotransmitter release and preventing neurodegeneration. CSP likely forms a chaperone complex on synaptic vesicles together with the 70-kDa heat shock cognate (Hsc70) and the small glutamine-rich tetratricopeptide repeat (TPR)-containing protein (SGT) that may control or protect the assembly and activity of SNARE proteins and various other protein substrates. Here, the author summarizes studies that elucidated CSP's neuroprotective role.


Assuntos
Citoproteção/fisiologia , Proteínas de Choque Térmico HSP40/fisiologia , Transtornos Heredodegenerativos do Sistema Nervoso/prevenção & controle , Proteínas de Membrana/fisiologia , Neurotransmissores/metabolismo , Animais , Encéfalo/citologia , Encéfalo/patologia , Encéfalo/fisiologia , Drosophila melanogaster , Transtornos Heredodegenerativos do Sistema Nervoso/metabolismo , Transtornos Heredodegenerativos do Sistema Nervoso/patologia , Humanos
9.
Neuron ; 47(3): 379-93, 2005 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-16055062

RESUMO

We have identified EMS-induced mutations in Drosophila Miro (dMiro), an atypical mitochondrial GTPase that is orthologous to human Miro (hMiro). Mutant dmiro animals exhibit defects in locomotion and die prematurely. Mitochondria in dmiro mutant muscles and neurons are abnormally distributed. Instead of being transported into axons and dendrites, mitochondria accumulate in parallel rows in neuronal somata. Mutant neuromuscular junctions (NMJs) lack presynaptic mitochondria, but neurotransmitter release and acute Ca2+ buffering is only impaired during prolonged stimulation. Neuronal, but not muscular, expression of dMiro in dmiro mutants restored viability, transport of mitochondria to NMJs, the structure of synaptic boutons, the organization of presynaptic microtubules, and the size of postsynaptic muscles. In addition, gain of dMiro function causes an abnormal accumulation of mitochondria in distal synaptic boutons of NMJs. Together, our findings suggest that dMiro is required for controlling anterograde transport of mitochondria and their proper distribution within nerve terminals.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila/fisiologia , Mitocôndrias/fisiologia , Sinapses/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Animais , Células COS , Cálcio/metabolismo , Chlorocebus aethiops , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Homeostase , Larva , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Atividade Motora/fisiologia , Neurônios Motores/metabolismo , Músculos/ultraestrutura , Mutação , Terminações Nervosas/metabolismo , Junção Neuromuscular/fisiologia , Neurônios/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Vesículas Transportadoras/fisiologia , Proteínas rho de Ligação ao GTP/genética , Proteínas rho de Ligação ao GTP/metabolismo
10.
Elife ; 82019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31663851

RESUMO

The autosomal dominant neuronal ceroid lipofuscinoses (NCL) CLN4 is caused by mutations in the synaptic vesicle (SV) protein CSPα. We developed animal models of CLN4 by expressing CLN4 mutant human CSPα (hCSPα) in Drosophila neurons. Similar to patients, CLN4 mutations induced excessive oligomerization of hCSPα and premature lethality in a dose-dependent manner. Instead of being localized to SVs, most CLN4 mutant hCSPα accumulated abnormally, and co-localized with ubiquitinated proteins and the prelysosomal markers HRS and LAMP1. Ultrastructural examination revealed frequent abnormal membrane structures in axons and neuronal somata. The lethality, oligomerization and prelysosomal accumulation induced by CLN4 mutations was attenuated by reducing endogenous wild type (WT) dCSP levels and enhanced by increasing WT levels. Furthermore, reducing the gene dosage of Hsc70 also attenuated CLN4 phenotypes. Taken together, we suggest that CLN4 alleles resemble dominant hypermorphic gain of function mutations that drive excessive oligomerization and impair membrane trafficking.


Assuntos
Drosophila melanogaster/genética , Mutação com Ganho de Função , Lipofuscinoses Ceroides Neuronais/genética , Neurônios/metabolismo , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Drosophila melanogaster/metabolismo , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , Humanos , Proteína 1 de Membrana Associada ao Lisossomo/genética , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Lisossomos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Microscopia Eletrônica de Transmissão , Lipofuscinoses Ceroides Neuronais/metabolismo , Neurônios/ultraestrutura , Vesículas Sinápticas/metabolismo , Proteínas Ubiquitinadas/genética , Proteínas Ubiquitinadas/metabolismo
11.
J Cell Biol ; 218(3): 993-1010, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30670470

RESUMO

We genetically characterized the synaptic role of the Drosophila homologue of human DCAF12, a putative cofactor of Cullin4 (Cul4) ubiquitin ligase complexes. Deletion of Drosophila DCAF12 impairs larval locomotion and arrests development. At larval neuromuscular junctions (NMJs), DCAF12 is expressed presynaptically in synaptic boutons, axons, and nuclei of motor neurons. Postsynaptically, DCAF12 is expressed in muscle nuclei and facilitates Cul4-dependent ubiquitination. Genetic experiments identified several mechanistically independent functions of DCAF12 at larval NMJs. First, presynaptic DCAF12 promotes evoked neurotransmitter release. Second, postsynaptic DCAF12 negatively controls the synaptic levels of the glutamate receptor subunits GluRIIA, GluRIIC, and GluRIID. The down-regulation of synaptic GluRIIA subunits by nuclear DCAF12 requires Cul4. Third, presynaptic DCAF12 is required for the expression of synaptic homeostatic potentiation. We suggest that DCAF12 and Cul4 are critical for normal synaptic function and plasticity at larval NMJs.


Assuntos
Proteínas Culina/metabolismo , Proteínas de Drosophila/metabolismo , Homeostase , Junção Neuromuscular/metabolismo , Plasticidade Neuronal , Neurotransmissores/metabolismo , Animais , Proteínas Culina/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Humanos , Larva/genética , Larva/metabolismo , Junção Neuromuscular/genética , Neurotransmissores/genética , Receptores Ionotrópicos de Glutamato/genética , Receptores Ionotrópicos de Glutamato/metabolismo , Ubiquitinação
12.
Neuron ; 40(4): 665-7, 2003 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-14622570

RESUMO

Clathrin-mediated endocytosis of synaptic vesicles requires molecular rearrangements of proteins as well as lipids. In this issue of Neuron, Schuske et al. and Verstreken et al. show that the lipid-modifying enzyme endophilin recruits and stabilizes the polyphosphoinositide phosphatase synaptojanin at nerve terminals. This remarkable pairing of two enzymatic activities promotes multiple steps of clathrin-mediated endocytosis of synaptic vesicles.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Endocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Terminações Pré-Sinápticas/metabolismo , Vesículas Sinápticas/metabolismo , Animais , Proteínas de Transporte/genética , Clatrina/metabolismo , Humanos , Mutação/genética , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Monoéster Fosfórico Hidrolases/deficiência , Monoéster Fosfórico Hidrolases/genética , Transmissão Sináptica/fisiologia
13.
Neuron ; 36(1): 105-19, 2002 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-12367510

RESUMO

Regulation of synaptic strength is essential for neuronal information processing, but the molecular mechanisms that control changes in neuroexocytosis are only partially known. Here we show that the putative G protein-coupled receptor Methuselah (Mth) is required in the presynaptic motor neuron to acutely upregulate neurotransmitter exocytosis at larval Drosophila NMJs. Mutations in the mth gene reduce evoked neurotransmitter release by approximately 50%, and decrease synaptic area and the density of docked and clustered vesicles. Pre- but not postsynaptic expression of normal Mth restored normal release in mth mutants. Conditional expression of Mth restored normal release and normal vesicle docking and clustering but not the reduced size of synaptic sites, suggesting that Mth acutely adjusts vesicle trafficking to synaptic sites.


Assuntos
Proteínas de Drosophila/deficiência , Drosophila melanogaster/metabolismo , Neurônios Motores/metabolismo , Sistema Nervoso/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transporte Proteico/genética , Receptores de Superfície Celular/deficiência , Receptores Acoplados a Proteínas G , Transmissão Sináptica/genética , Potenciais de Ação/genética , Animais , Cálcio/metabolismo , Sinalização do Cálcio/genética , Regulação para Baixo/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/ultraestrutura , Exocitose/genética , Feminino , Proteínas de Ligação ao GTP/metabolismo , Ionóforos , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/ultraestrutura , Masculino , Neurônios Motores/ultraestrutura , Sistema Nervoso/crescimento & desenvolvimento , Sistema Nervoso/ultraestrutura , Junção Neuromuscular/metabolismo , Junção Neuromuscular/ultraestrutura , Terminações Pré-Sinápticas/ultraestrutura , Receptores de Superfície Celular/genética , Membranas Sinápticas/metabolismo , Membranas Sinápticas/ultraestrutura
14.
Artigo em Inglês | MEDLINE | ID: mdl-18639643

RESUMO

The distribution of mitochondria is sensitive to physiological stresses and changes in metabolic demands. Consequently, it is important to carefully define the conditions facilitating live imaging of mitochondrial transport in dissected animal preparations. In this study, we examined Schneider's and the haemolymph-like solutions HL3 and HL6 for their suitability to image mitochondrial transport in motor axons of dissected Drosophila melanogaster larvae. Overall, mitochondrial transport kinetics in larval motor axons appeared similar among all three solutions. Unexpectedly, HL3 solution selectively increased the length of mitochondria in the context of the net-direction of transport. We also found that mitochondrial transport is sensitive to the extracellular Ca(2+) but not glutamate concentration. High concentrations of extracellular glutamate affected only the ratio between motile and stationary mitochondria. Our study offers a valuable overview of mitochondrial transport kinetics in larval motor axons of Drosophila under various conditions, guiding future studies genetically dissecting mechanisms of mitochondrial transport.


Assuntos
Axônios/metabolismo , Drosophila/metabolismo , Aumento da Imagem , Mitocôndrias/metabolismo , Neurônios Motores/metabolismo , Animais , Axônios/ultraestrutura , Transporte Biológico , Cálcio/metabolismo , Drosophila/ultraestrutura , Matriz Extracelular/química , Matriz Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Larva , Microscopia Confocal , Mitocôndrias/ultraestrutura , Neurônios Motores/ultraestrutura
15.
eNeuro ; 5(5)2018.
Artigo em Inglês | MEDLINE | ID: mdl-30263951

RESUMO

Cell cryopreservation improves reproducibility and enables flexibility in experimental design. Although conventional freezing methodologies have been used to preserve primary neurons, poor cell viability and reduced survival severely limited their utility. We screened several high-performance freezing media and found that CryoStor10 (CS10) provided superior cryoprotection to primary mouse embryonic cortical neurons compared to other commercially-available or traditional reagents, permitting the recovery of 68.8% of cells relative to a fresh dissection. We characterized developmental, morphometric, and functional indicators of neuron maturation and found that, without exception, neurons recovered from cryostorage in CS10 media faithfully recapitulate in vitro neurodevelopment in-step with neurons obtained by fresh dissection. Our method establishes cryopreserved neurons as a reliable, efficient, and equivalent model to fresh neuron cultures.


Assuntos
Sobrevivência Celular/fisiologia , Criopreservação , Neurônios/fisiologia , Reprodutibilidade dos Testes , Animais , Técnicas de Cultura de Células/métodos , Células Cultivadas , Criopreservação/métodos , Camundongos , Roedores
16.
J Neurosci ; 25(9): 2204-14, 2005 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-15745946

RESUMO

The synaptic vesicle-associated cysteine-string protein (CSP) is important for synaptic transmission. Previous studies revealed multiple defects at neuromuscular junctions (NMJs) of csp null-mutant Drosophila, but whether these defects are independent of each other or mechanistically linked through J domain mediated-interactions with heat-shock cognate protein 70 (Hsc70) has not been established. To resolve this issue, we genetically dissected the individual functions of CSP by an in vivo structure/function analysis. Expression of mutant CSP lacking the J domain at csp null-mutant NMJs fully restored normal thermo-tolerance of evoked transmitter release but did not completely restore evoked release at room temperature and failed to reverse the abnormal intraterminal Ca2+ levels. This suggests that J domain-mediated functions are essential for the regulation of intraterminal Ca2+ levels but only partially required for regulating evoked release and not required for protecting evoked release against thermal stress. Hence, CSP can also act as an Hsc70-independent chaperone protecting evoked release from thermal stress. Expression of mutant CSP lacking the L domain restored neurotransmission and partially reversed the abnormal intraterminal Ca2+ levels, suggesting that the L domain is important, although not essential, for the role of CSP in regulating intraterminal Ca2+ levels. We detected no effects of csp mutations on individual presynaptic Ca2+ signals triggered by action potentials, suggesting that presynaptic Ca2+ entry is not primarily impaired. Both the J and L domains were also required for the role of CSP in synaptic growth. Together, these results suggest that CSP has several independent synaptic functions, affecting synaptic growth, evoked release, thermal protection of evoked release, and intraterminal Ca2+ levels at rest and during stimulation.


Assuntos
Proteínas de Choque Térmico HSP40/fisiologia , Proteínas de Membrana/fisiologia , Junção Neuromuscular/citologia , Mutação Puntual/fisiologia , Terminações Pré-Sinápticas/metabolismo , Análise de Variância , Animais , Animais Geneticamente Modificados , Evolução Biológica , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Diagnóstico por Imagem/métodos , Drosophila , Proteínas de Drosophila/metabolismo , Expressão Gênica/genética , Proteínas de Choque Térmico HSP40/química , Proteínas de Choque Térmico HSP40/genética , Peroxidase do Rábano Silvestre/metabolismo , Humanos , Imuno-Histoquímica/métodos , Potenciais da Membrana/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Junção Neuromuscular/metabolismo , Junção Neuromuscular/fisiologia , Técnicas de Patch-Clamp/métodos , Terminações Pré-Sinápticas/fisiologia , Estrutura Terciária de Proteína/genética , Estrutura Terciária de Proteína/fisiologia , Relação Estrutura-Atividade , Temperatura , Fatores de Tempo
17.
Neuron ; 92(6): 1152-1154, 2016 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-28009268

RESUMO

In this issue of Neuron, Han et al. (2016) and Cartoni et al. (2016) define a critical role of mitochondrial transport for successful axon regeneration after injury and provide new insights into intrinsic mechanisms controlling neuronal regeneration capacity in worms and mice.


Assuntos
Axônios , Mitocôndrias , Animais , Transporte Biológico , Camundongos , Regeneração Nervosa , Neurônios , Regeneração
18.
Science ; 349(6250): 873-6, 2015 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-26293964

RESUMO

Plasma membrane depolarization can trigger cell proliferation, but how membrane potential influences mitogenic signaling is uncertain. Here, we show that plasma membrane depolarization induces nanoscale reorganization of phosphatidylserine and phosphatidylinositol 4,5-bisphosphate but not other anionic phospholipids. K-Ras, which is targeted to the plasma membrane by electrostatic interactions with phosphatidylserine, in turn undergoes enhanced nanoclustering. Depolarization-induced changes in phosphatidylserine and K-Ras plasma membrane organization occur in fibroblasts, excitable neuroblastoma cells, and Drosophila neurons in vivo and robustly amplify K-Ras-dependent mitogen-activated protein kinase (MAPK) signaling. Conversely, plasma membrane repolarization disrupts K-Ras nanoclustering and inhibits MAPK signaling. By responding to voltage-induced changes in phosphatidylserine spatiotemporal dynamics, K-Ras nanoclusters set up the plasma membrane as a biological field-effect transistor, allowing membrane potential to control the gain in mitogenic signaling circuits.


Assuntos
Membrana Celular/fisiologia , Potenciais da Membrana , Fosfatidilinositol 4,5-Difosfato/metabolismo , Fosfatidilserinas/metabolismo , Proteínas ras/metabolismo , Animais , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Cricetinae , Drosophila melanogaster , Fibroblastos , Camundongos , Neurônios , Transdução de Sinais
19.
Neuron ; 84(4): 659-61, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25459405

RESUMO

In this issue of Neuron, Wong et al. (2014) report a remarkable evolutionarily conserved role for the Drosophila TRPV1 homolog Inactive controlling synaptic growth at larval neuromuscular junctions by facilitating Ca(2+) release from the endoplasmic reticulum.


Assuntos
Cálcio/metabolismo , Proteínas de Drosophila/metabolismo , Canais Iônicos/metabolismo , Neurônios Motores/metabolismo , Junção Neuromuscular/metabolismo , Terminações Pré-Sinápticas/metabolismo , Transmissão Sináptica/fisiologia , Canais de Cátion TRPV/metabolismo , Animais
20.
Sci Rep ; 4: 6962, 2014 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-25376463

RESUMO

Mutations in the mitochondrial Ser/Thr kinase PINK1 cause Parkinson's disease. One of the substrates of PINK1 is the outer mitochondrial membrane protein Miro, which regulates mitochondrial transport. In this study, we uncovered novel physiological functions of PINK1-mediated phosphorylation of Miro, using Drosophila as a model. We replaced endogenous Drosophila Miro (DMiro) with transgenically expressed wildtype, or mutant DMiro predicted to resist PINK1-mediated phosphorylation. We found that the expression of phospho-resistant DMiro in a DMiro null mutant background phenocopied a subset of phenotypes of PINK1 null. Specifically, phospho-resistant DMiro increased mitochondrial movement and synaptic growth at larval neuromuscular junctions, and decreased the number of dopaminergic neurons in adult brains. Therefore, PINK1 may inhibit synaptic growth and protect dopaminergic neurons by phosphorylating DMiro. Furthermore, muscle degeneration, swollen mitochondria and locomotor defects found in PINK1 null flies were not observed in phospho-resistant DMiro flies. Thus, our study established an in vivo platform to define functional consequences of PINK1-mediated phosphorylation of its substrates.


Assuntos
Encéfalo/metabolismo , Neurônios Dopaminérgicos/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Junção Neuromuscular/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas rho de Ligação ao GTP/metabolismo , Animais , Animais Geneticamente Modificados , Encéfalo/patologia , Modelos Animais de Doenças , Neurônios Dopaminérgicos/patologia , Proteínas de Drosophila/deficiência , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Larva/genética , Larva/metabolismo , Locomoção/genética , Mitocôndrias/genética , Mitocôndrias/patologia , Doenças Mitocondriais/genética , Doenças Mitocondriais/metabolismo , Doenças Mitocondriais/patologia , Músculos/metabolismo , Músculos/patologia , Mutação , Junção Neuromuscular/genética , Junção Neuromuscular/patologia , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Fenótipo , Fosforilação , Proteínas Serina-Treonina Quinases/deficiência , Transdução de Sinais , Sinapses/metabolismo , Sinapses/patologia , Proteínas rho de Ligação ao GTP/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA