Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39042016

RESUMO

The pulmonary epithelial glycocalyx is rich in glycosaminoglycans such as hyaluronan and heparan sulfate. Despite their presence, the importance of these glycosaminoglycans in bacterial lung infections remains elusive. To address this, we intranasally inoculated mice with Streptococcus pneumoniae in the presence or absence of enzymes targeting pulmonary hyaluronan and heparan sulfate, followed by characterization of subsequent disease pathology, pulmonary inflammation, and lung barrier dysfunction. Enzymatic degradation of hyaluronan and heparan sulfate exacerbated pneumonia in mice, as evidenced by increased disease scores and alveolar neutrophil recruitment. However, targeting epithelial hyaluronan in combination with Streptococcus pneumoniae infection further exacerbated systemic disease, indicated by elevated splenic bacterial load and plasma levels of pro-inflammatory cytokines. In contrast, enzymatic cleavage of heparan sulfate resulted in increased bronchoalveolar bacterial burden, lung damage and pulmonary inflammation in mice infected with Streptococcus pneumoniae. Accordingly, heparinase-treated mice also exhibited disrupted lung barrier integrity as evidenced by higher alveolar edema scores and vascular protein leakage into the airways. This finding was corroborated in a human alveolus-on-a-chip platform, confirming that heparinase treatment also disrupts the human lung barrier during Streptococcus pneumoniae infection. Notably, enzymatic pre-treatment with either hyaluronidase or heparinase also rendered human epithelial cells more sensitive to pneumococcal-induced barrier disruption, as determined by transepithelial electrical resistance measurements, consistent with our findings in murine pneumonia. Taken together, these findings demonstrate the importance of intact hyaluronan and heparan sulfate in limiting pneumococci-induced damage, pulmonary inflammation, and epithelial barrier function and integrity.

2.
Virol J ; 21(1): 15, 2024 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-38200555

RESUMO

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic is driven by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, which has led to an enormous burden on patient morbidity and mortality. The renin-angiotensin-aldosterone system (RAAS) plays a significant role in various pulmonary diseases. Since SARS-CoV-2 utilizes the angiotensin-converting enzyme (ACE)2 receptor to exert its virulence and pathogenicity, the RAAS is of particular importance in COVID 19. METHODS: Our preliminary study investigates retrospectively the influence of selected ACE-polymorphisms (I/D location at intron 16 in the B-coding sequence (rs4646994) and A-240T (rs 4291) at the A-promoter) as well as ACE1 and ACE2 serum levels on disease severity and the inflammatory response in inpatients and outpatients with COVID-19. RESULTS: Our study included 96 outpatients and 88 inpatients (65.9% male, mean age 60 years) with COVID-19 from April to December 2020 in four locations in Germany. Of the hospitalized patients, 88.6% participants were moderately ill (n = 78, 64% male, median age 60 years), and 11.4% participants were severely ill or deceased (n = 10, 90% male, median age 71 years). We found no polymorphism-related difference in disease, in age distribution, time to hospitalization and time of hospitalization for the inpatient group. ACE1 serum levels were significantly increased in the DD compared to the II polymorphism and in the TT compared to the AA polymorphism. There was no significant difference in ACE 1 serum levels l between moderately ill and severely ill patients. However, participants requiring oxygen supplementation had significantly elevated ACE1 levels compared to participants not requiring oxygen, with no difference in ACE2 levels whereas females had significantly higher ACE2 levels. CONCLUSIONS: Although there were no differences in the distribution of ACE polymorphisms in disease severity, we found increased proinflammatory regulation of the RAAS in patients with oxygen demand and increased serum ACE2 levels in women, indicating a possible enhanced anti-inflammatory immune response. CLINICAL TRIAL REGISTRATION: PreBiSeCov: German Clinical Trials Register, DRKS-ID: DRKS00021591, Registered on 27th April 2020.


Assuntos
COVID-19 , Sistema Renina-Angiotensina , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Enzima de Conversão de Angiotensina 2/genética , Mutagênese Insercional , Oxigênio , Peptidil Dipeptidase A/genética , Sistema Renina-Angiotensina/genética , Estudos Retrospectivos , SARS-CoV-2/genética
3.
Cells ; 12(6)2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36980300

RESUMO

Community-acquired pneumonia remains a major contributor to global communicable disease-mediated mortality. Neutrophils play a leading role in trying to contain bacterial lung infection, but they also drive detrimental pulmonary inflammation, when dysregulated. Here we aimed at understanding the role of microRNA-223 in orchestrating pulmonary inflammation during pneumococcal pneumonia. Serum microRNA-223 was measured in patients with pneumococcal pneumonia and in healthy subjects. Pulmonary inflammation in wild-type and microRNA-223-knockout mice was assessed in terms of disease course, histopathology, cellular recruitment and evaluation of inflammatory protein and gene signatures following pneumococcal infection. Low levels of serum microRNA-223 correlated with increased disease severity in pneumococcal pneumonia patients. Prolonged neutrophilic influx into the lungs and alveolar spaces was detected in pneumococci-infected microRNA-223-knockout mice, possibly accounting for aggravated histopathology and acute lung injury. Expression of microRNA-223 in wild-type mice was induced by pneumococcal infection in a time-dependent manner in whole lungs and lung neutrophils. Single-cell transcriptome analyses of murine lungs revealed a unique profile of antimicrobial and cellular maturation genes that are dysregulated in neutrophils lacking microRNA-223. Taken together, low levels of microRNA-223 in human pneumonia patient serum were associated with increased disease severity, whilst its absence provoked dysregulation of the neutrophil transcriptome in murine pneumococcal pneumonia.


Assuntos
MicroRNAs , Pneumonia Pneumocócica , Animais , Humanos , Camundongos , Inflamação/genética , Inflamação/microbiologia , Inflamação/patologia , Pulmão/patologia , Camundongos Knockout , MicroRNAs/genética , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Pneumonia Pneumocócica/patologia , Streptococcus pneumoniae
4.
Sci Rep ; 13(1): 21846, 2023 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071261

RESUMO

Serological assays measuring antibodies against SARS-CoV-2 are key to describe the epidemiology, pathobiology or induction of immunity after infection or vaccination. Of those, multiplex assays targeting multiple antigens are especially helpful as closely related coronaviruses or other antigens can be analysed simultaneously from small sample volumes, hereby shedding light on patterns in the immune response that would otherwise remain undetected. We established a bead-based 17-plex assay detecting antibodies targeting antigens from all coronaviruses pathogenic for humans: SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV strains 229E, OC43, HKU1, and NL63. The assay was validated against five commercial serological immunoassays, a commercial surrogate virus neutralisation test, and a virus neutralisation assay, all targeting SARS-CoV-2. It was found to be highly versatile as shown by antibody detection from both serum and dried blot spots and as shown in three case studies. First, we followed seroconversion for all four endemic HCoV strains and SARS-CoV-2 in an outbreak study in day-care centres for children. Second, we were able to link a more severe clinical course to a stronger IgG response with this 17-plex-assay, which was IgG1 and IgG3 dominated. Finally, our assay was able to discriminate recent from previous SARS-CoV-2 infections by calculating the IgG/IgM ratio on the N antigen targeting antibodies. In conclusion, due to the comprehensive method comparison, thorough validation, and the proven versatility, our multiplex assay is a valuable tool for studies on coronavirus serology.


Assuntos
COVID-19 , Coronavirus Humano OC43 , Coronavírus da Síndrome Respiratória do Oriente Médio , Criança , Humanos , SARS-CoV-2 , Imunidade Humoral , COVID-19/diagnóstico , COVID-19/epidemiologia , Imunoglobulina G , Anticorpos Antivirais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA