Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Accid Anal Prev ; 192: 107254, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37557000

RESUMO

Grassroots dirt track racing is a foundational part of motorsports with a high risk of severe injury. This study aimed to gather perspectives and experiences of motorsports drivers surrounding safety and head acceleration events experienced during grassroots dirt track racing to inform strategies to improve driver safety. Thirteen drivers (n=9 who primarily race on dirt tracks; n=4 who primarily race on pavement tracks) with prior dirt track racing experience participated in separate, group-specific focus groups and/or one-on-one interviews where video, simulations of head motion, and head acceleration data were shared. Peak kinematics of laps and crash contact scenarios were recorded, and head perturbations (i.e., deviations in head motion relative to its moving-average trajectory) were quantified for each lap and presented through guided discussion. Responses were summarized using Rapid Assessment Process. Audio recordings and field notes were collected from focus groups and interviews and analyzed across 25 domains. Drivers described dirt track racing as short, fast bursts of racing. Benefits of dirt track racing for driver development were described, including learning car control. Drivers acknowledged risks of racing and expressed confidence in safety equipment but identified areas for improvement. Drivers observed lateral bouncing of the head in video and simulations but recognized that such motions were not noticed while racing. Track conditions and track type were identified as factors influencing head perturbations. Mean PLA (5.5 g) and PRV (3.07 rad/s) of perturbations experienced during racing laps and perturbation frequencies of 5 and 7 perturbations per second were reported. Generally, drivers accurately estimated the head acceleration magnitudes but were surprised by the frequency and maximum magnitude of perturbations. Maximum perturbation magnitudes (26.8 g and 19.0 rad/s) were attributed to hitting a "rut" in the dirt. Drivers described sudden stops, vertical loads due to landing from a large height, and impacts to the vehicle frame as crash events they physically feel the most. Summary statistics for crashes (medians = 7.30 g, 6.94 rad/s) were reported. Typical impact magnitudes measured in other sports (e.g., football) were provided for context. Upon reviewing the biomechanics, drivers were surprised that crash accelerations were relatively low compared to other contact/collision sports. Pavement drivers noted limited safety features in dirt track racing compared to pavement, including rigidity of vehicle frames, seat structure, seatbelt integration, and lack of oversight from sanctioning bodies. Most drivers felt seat inserts and head and neck restraints are important for injury prevention; however, usage of seat inserts and preferred head and neck restraint system differed among drivers. Drivers described their perspectives and experiences related to safety and identified strategies to improve safety in grassroots dirt track racing. Drivers expressed support for future safety research.


Assuntos
Acidentes de Trânsito , Esportes , Humanos , Acidentes de Trânsito/prevenção & controle , Fenômenos Biomecânicos , Cintos de Segurança , Equipamentos de Proteção
2.
Accid Anal Prev ; 191: 107184, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37421803

RESUMO

Motorsport athletes experience head acceleration loading during crashes; however, there is limited literature quantifying the frequency and magnitude of these loads, particularly at the grassroots level of the sport. Understanding head motion experienced during crash events in motorsport is necessary to inform interventions to improve driver safety. This study aimed to quantify and characterize driver head and vehicle kinematics during crashes in open-wheel grassroots dirt track racing. Seven drivers (ages 16-22, n = 2 female) competing in a national midget car series were enrolled in this study over two racing seasons and were instrumented with custom mouthpiece sensors. Drivers' vehicles were outfitted with an incident data recorder (IDR) to measure vehicle acceleration. Forty-one crash events were verified and segmented into 139 individual contact scenarios via film review. Peak resultant linear acceleration (PLA) of the vehicle and PLA, peak rotational acceleration (PRA), and peak rotational velocity (PRV) of the head were quantified and compared across the part of the vehicle contacted (i.e., tires or chassis), the vehicle location contacted (e.g., front, left, bottom), the external object contacted (i.e., another vehicle, wall, or the track), and the principal direction of force (PDOF). The median (95th percentile) PLA, PRA, and PRV of the head and PLA of the vehicle were 12.3 (37.3) g, 626 (1799) rad/s2, 8.92 (18.6) rad/s, and 23.2 (88.1) g, respectively. Contacts with a non-horizontal PDOF (n = 98, 71%) and contact with the track (n = 96, 70%) were common in the data set. Contact to the left side of the vehicle, with the track, and with a non-horizontal PDOF tended to have the greatest head kinematics compared to other factors in each sub-analysis. Results from this pilot study can inform larger studies of head acceleration exposure during crashes in the grassroots motorsports environment and may ultimately support evidence-based driver safety interventions.


Assuntos
Acidentes de Trânsito , Esportes , Feminino , Humanos , Aceleração , Fenômenos Biomecânicos , Projetos Piloto , Poliésteres , Masculino , Adolescente , Adulto Jovem
3.
Traffic Inj Prev ; 23(sup1): S38-S43, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35939323

RESUMO

OBJECTIVE: The objective of this study was to utilize an instrumented mouthpiece sensor to characterize head kinematics experienced by grassroots dirt track race car drivers. METHODS: Four dirt track race car drivers (ages 16-19) were instrumented with custom mouthpiece sensors capable of accurately measuring head motion during racing. Sensors were deployed before races and recorded tri-axial linear acceleration and rotational velocity for approximately 10 min at 200 Hz. Film review was performed to identify data associated with racing laps. For each lap, moving average kinematics were computed and subtracted from the head motion signals to obtain 'adjusted' head motion accounting for lower frequency variance due to periodic motion around the track. From adjusted data, linear and angular head perturbations (i.e., deviations from moving average) were extracted using a custom algorithm. RESULTS: Data was collected during 400 driver-races. A total of 2438 laps were segmented from mouthpiece recordings. The median (95th percentile) peak linear acceleration, rotational velocity, and rotational acceleration of all laps were 5.33 (8.28) g, 2.89 (4.60) rad/s, and 179 (310) rad/s2, respectively. Angular perturbations occurred most frequently about the anterior-posterior axis (median lap frequency = 6.39 Hz); whereas linear perturbations occurred most frequently in the inferior-superior direction (7.96 Hz). Nine crash events were recorded by the mouthpiece sensors. The median (95th percentile) peak head kinematics of these events were 13.4 (36.6) g, 9.67 (21.9) rad/s, and 630 (1330) rad/s2. CONCLUSIONS: Mouthpiece sensors can be used to measure head kinematics during active racing. Laps, head perturbations, and crashes may be useful units of observation to describe typical head kinematic exposure experienced by drivers while racing. Subsequent research is needed to understand the associations between repetitive racing exposure and neurological function. Higher magnitude events (i.e., crashes) are not uncommon and may result in concussion or more severe injury. Results represent novel characterizations of head kinematic exposure experienced in a dirt track racing environment. This information may inform evidence-based strategies (e.g., vehicle/seat design) to improve driver safety.


Assuntos
Acidentes de Trânsito , Concussão Encefálica , Humanos , Adolescente , Adulto Jovem , Adulto , Fenômenos Biomecânicos , Aceleração , Cabeça
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA