Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
EMBO J ; 41(21): e111084, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36121025

RESUMO

Alzheimer's disease (AD) pathogenesis has been linked to the accumulation of longer, aggregation-prone amyloid ß (Aß) peptides in the brain. Γ-secretases generate Aß peptides from the amyloid precursor protein (APP). Γ-secretase modulators (GSMs) promote the generation of shorter, less-amyloidogenic Aßs and have therapeutic potential. However, poorly defined drug-target interactions and mechanisms of action have hampered their therapeutic development. Here, we investigate the interactions between the imidazole-based GSM and its target γ-secretase-APP using experimental and in silico approaches. We map the GSM binding site to the enzyme-substrate interface, define a drug-binding mode that is consistent with functional and structural data, and provide molecular insights into the underlying mechanisms of action. In this respect, our analyses show that occupancy of a γ-secretase (sub)pocket, mediating binding of the modulator's imidazole moiety, is sufficient to trigger allosteric rearrangements in γ-secretase as well as stabilize enzyme-substrate interactions. Together, these findings may facilitate the rational design of new modulators of γ-secretase with improved pharmacological properties.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Humanos , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Inibidores e Moduladores de Secretases gama , Doença de Alzheimer/metabolismo , Imidazóis/uso terapêutico
2.
EMBO J ; 38(12)2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31109937

RESUMO

γ-Secretase complexes (GSECs) are multimeric membrane proteases involved in a variety of physiological processes and linked to Alzheimer's disease (AD). Presenilin (PSEN, catalytic subunit), Nicastrin (NCT), Presenilin Enhancer 2 (PEN-2), and Anterior Pharynx Defective 1 (APH1) are the essential subunits of GSECs. Mutations in PSEN and the Amyloid Precursor Protein (APP) cause early-onset AD GSECs successively cut APP to generate amyloid-ß (Aß) peptides of various lengths. AD-causing mutations destabilize GSEC-APP/Aßn interactions and thus enhance the production of longer Aßs, which elicit neurotoxic events underlying pathogenesis. Here, we investigated the molecular strategies that anchor GSEC and APP/Aßn during the sequential proteolysis. Our studies reveal that a direct interaction between NCT ectodomain and APPC99 influences the stability of GSEC-Aßn assemblies and thereby modulates Aß length. The data suggest a potential link between single-nucleotide variants in NCSTN and AD risk. Furthermore, our work indicates that an extracellular interface between the protease (NCT, PSEN) and the substrate (APP) represents the target for compounds (GSMs) modulating Aß length. Our findings may guide future rationale-based drug discovery efforts.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Glicoproteínas de Membrana/metabolismo , Domínios e Motivos de Interação entre Proteínas/fisiologia , Secretases da Proteína Precursora do Amiloide/química , Precursor de Proteína beta-Amiloide/química , Animais , Células Cultivadas , Ativação Enzimática , Espaço Extracelular , Células HEK293 , Humanos , Glicoproteínas de Membrana/química , Camundongos , Modelos Moleculares , Simulação de Acoplamento Molecular , Ligação Proteica , Estrutura Quaternária de Proteína , Proteólise , Relação Estrutura-Atividade
3.
Mol Psychiatry ; 27(6): 2821-2832, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35365805

RESUMO

Familial Alzheimer's disease (FAD), caused by mutations in Presenilin (PSEN1/2) and Amyloid Precursor Protein (APP) genes, is associated with an early age at onset (AAO) of symptoms. AAO is relatively consistent within families and between carriers of the same mutations, but differs markedly between individuals carrying different mutations. Gaining a mechanistic understanding of why certain mutations manifest several decades earlier than others is extremely important in elucidating the foundations of pathogenesis and AAO. Pathogenic mutations affect the protease (PSEN/γ-secretase) and the substrate (APP) that generate amyloid ß (Aß) peptides. Altered Aß metabolism has long been associated with AD pathogenesis, with absolute or relative increases in Aß42 levels most commonly implicated in the disease development. However, analyses addressing the relationships between these Aß42 increments and AAO are inconsistent. Here, we investigated this central aspect of AD pathophysiology via comprehensive analysis of 25 FAD-linked Aß profiles. Hypothesis- and data-driven approaches demonstrate linear correlations between mutation-driven alterations in Aß profiles and AAO. In addition, our studies show that the Aß (37 + 38 + 40) / (42 + 43) ratio offers predictive value in the assessment of 'unclear' PSEN1 variants. Of note, the analysis of PSEN1 variants presenting additionally with spastic paraparesis, indicates that a different mechanism underlies the aetiology of this distinct clinical phenotype. This study thus delivers valuable assays for fundamental, clinical and genetic research as well as supports therapeutic interventions aimed at shifting Aß profiles towards shorter Aß peptides.


Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Mutação/genética , Presenilina-1/genética , Presenilina-1/metabolismo
4.
EMBO J ; 37(7)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29472250

RESUMO

The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid-liquid phase separation (LLPS) under cellular conditions and that phase-separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho-tau isolated from human Alzheimer brain. Droplet-like tau can also be observed in neurons and other cells. We found that tau droplets become gel-like in minutes, and over days start to spontaneously form thioflavin-S-positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.


Assuntos
Doença de Alzheimer/metabolismo , Esclerose Lateral Amiotrófica/metabolismo , Encéfalo/metabolismo , Neurônios/metabolismo , Agregação Patológica de Proteínas/metabolismo , Proteínas tau/química , Proteínas tau/isolamento & purificação , Proteínas tau/metabolismo , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Animais , Benzotiazóis/metabolismo , Fenômenos Biofísicos , Clonagem Molecular , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Feminino , Células HEK293 , Ribonucleoproteína Nuclear Heterogênea A1/metabolismo , Humanos , Extração Líquido-Líquido , Camundongos , Camundongos Transgênicos , Peso Molecular , Neuroblastoma/metabolismo , Doenças Neurodegenerativas/metabolismo , Emaranhados Neurofibrilares/metabolismo , Fosforilação , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Sequência de Proteína , Células Sf9
5.
BMC Biol ; 14: 25, 2016 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-27036734

RESUMO

BACKGROUND: Synaptic loss strongly correlates with memory deterioration. Local accumulation of amyloid ß (Aß) peptide, and neurotoxic Aß42 in particular, due to abnormal neuronal activity may underlie synaptic dysfunction, neurodegeneration, and memory impairments. To gain an insight into molecular events underlying neuronal activity-regulated Aß production at the synapse, we explored functional outcomes of the newly discovered calcium-dependent interaction between Alzheimer's disease-associated presenilin 1 (PS1)/γ-secretase and synaptic vesicle proteins. RESULTS: Mass spectrometry screen of mouse brain lysates identified synaptotagmin 1 (Syt1) as a novel synapse-specific PS1-binding partner that shows Ca(2+)-dependent PS1 binding profiles in vitro and in vivo. We found that Aß level, and more critically, conformation of the PS1 and the Aß42/40 ratio, are affected by Syt1 overexpression or knockdown, indicating that Syt1 and its interaction with PS1 might regulate Aß production at the synapse. Moreover, ß-secretase 1 (BACE1) stability, ß- and γ-secretase activity, as well as intracellular compartmentalization of PS1 and BACE1, but not of amyloid precursor protein (APP), nicastrin (Nct), presenilin enhancer 2 (Pen-2), or synaptophysin (Syp) were altered in the absence of Syt1, suggesting a selective effect of Syt1 on PS1 and BACE1 trafficking. CONCLUSIONS: Our findings identify Syt1 as a novel Ca(2+)-sensitive PS1 modulator that could regulate synaptic Aß, opening avenues for novel and selective synapse targeting therapeutic strategies.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Presenilina-1/metabolismo , Mapas de Interação de Proteínas , Sinaptotagmina I/metabolismo , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/análise , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/análise , Animais , Cálcio/metabolismo , Linhagem Celular , Células Cultivadas , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/análise , Ratos , Sinapses/metabolismo , Sinapses/patologia , Sinaptotagmina I/análise
6.
Mol Med ; 22: 329-337, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27391800

RESUMO

The ratio of the longer (i.e., Aß42/Aß43) to shorter (i.e. Aß40) species is a critical factor determining amyloid fibril formation, neurotoxicity and progression of the amyloid pathology in Alzheimer's disease. The relative levels of the different Aß species are affected by activity and conformation of the γ-secretase complex catalytic component - presenilin 1 (PS1). The enzyme exists in a dynamic equilibrium of the conformational states, with so-called "close" conformation associated with the shift of the γ-secretase cleavage towards the production of longer, neurotoxic Aß species. In the current study, fluorescence lifetime imaging microscopy, spectral Förster resonance energy transfer, calcium imaging and cytotoxicity assays were utilized to explore reciprocal link between the Aß42 and Aß40 peptides present at various ratios and PS1 conformation in primary neurons. We report that exposure to Aß peptides at a relatively high ratio of Aß42/40 causes conformational change within the PS1 subdomain architecture towards the pathogenic "closed" state. Mechanistically, the Aß42/40 peptides present at the relatively high ratio increase intracellular calcium levels, which were shown to trigger pathogenic PS1 conformation. This indicates that there is a reciprocal crosstalk between the extracellular Aß peptides and PS1 conformation within a neuron, with Aß40 showing some protective effect. The pathogenic shift within the PS1 domain architecture may further shift the production of Aß peptides towards the longer, neurotoxic Aß species. These findings link elevated calcium, Aß42 and PS1/γ-secretase conformation, and offer possible mechanistic explanation of the impending exacerbation of the amyloid pathology.

7.
Hum Mol Genet ; 22(14): 2905-13, 2013 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-23569079

RESUMO

Mutations in GFPT1 underlie a congenital myasthenic syndrome (CMS) characterized by a limb-girdle pattern of muscle weakness. Glutamine-fructose-6-phosphate transaminase 1 (GFPT1) is a key rate-limiting enzyme in the hexosamine biosynthetic pathway providing building blocks for the glycosylation of proteins and lipids. It is expressed ubiquitously and it is not readily apparent why mutations in this gene should cause a syndrome with symptoms restricted to muscle and, in particular, to the neuromuscular junction. Data from a muscle biopsy obtained from a patient with GFPT1 mutations indicated that there were reduced endplate acetylcholine receptors. We, therefore, further investigated the relationship between identified mutations in GFPT1 and expression of the muscle acetylcholine receptor. Cultured myotubes derived from two patients with GFPT1 mutations showed a significant reduction in cell-surface AChR expression (Pt1 P < 0.0001; Pt2 P = 0.0097). Inhibition of GFPT1 enzymatic activity or siRNA silencing of GFPT1 expression both resulted in reduced AChR cell-surface expression. Western blot and gene-silencing experiments indicate this is due to reduced steady-state levels of AChR α, δ, ε, but not ß subunits rather than altered transcription of AChR-subunit RNA. Uridine diphospho-N-acetylglucosamine, a product of the hexosamine synthetic pathway, acts as a substrate at an early stage in the N-linked glycosylation pathway. Similarity between CMS due to GFPT1 mutations and CMS due to DPAGT1 mutations would suggest that reduced endplate AChR due to defective N-linked glycosylation is a primary disease mechanism in this disorder.


Assuntos
Regulação para Baixo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Mutação , Síndromes Miastênicas Congênitas/enzimologia , Receptores Colinérgicos/genética , Células Cultivadas , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glicosilação , Humanos , Fibras Musculares Esqueléticas/enzimologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/enzimologia , Músculo Esquelético/metabolismo , Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/metabolismo , Receptores Colinérgicos/metabolismo
8.
Brain ; 136(Pt 3): 944-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23404334

RESUMO

Congenital myasthenic syndromes are a heterogeneous group of inherited disorders that arise from impaired signal transmission at the neuromuscular synapse. They are characterized by fatigable muscle weakness. We performed linkage analysis, whole-exome and whole-genome sequencing to determine the underlying defect in patients with an inherited limb-girdle pattern of myasthenic weakness. We identify ALG14 and ALG2 as novel genes in which mutations cause a congenital myasthenic syndrome. Through analogy with yeast, ALG14 is thought to form a multiglycosyltransferase complex with ALG13 and DPAGT1 that catalyses the first two committed steps of asparagine-linked protein glycosylation. We show that ALG14 is concentrated at the muscle motor endplates and small interfering RNA silencing of ALG14 results in reduced cell-surface expression of muscle acetylcholine receptor expressed in human embryonic kidney 293 cells. ALG2 is an alpha-1,3-mannosyltransferase that also catalyses early steps in the asparagine-linked glycosylation pathway. Mutations were identified in two kinships, with mutation ALG2p.Val68Gly found to severely reduce ALG2 expression both in patient muscle, and in cell cultures. Identification of DPAGT1, ALG14 and ALG2 mutations as a cause of congenital myasthenic syndrome underscores the importance of asparagine-linked protein glycosylation for proper functioning of the neuromuscular junction. These syndromes form part of the wider spectrum of congenital disorders of glycosylation caused by impaired asparagine-linked glycosylation. It is likely that further genes encoding components of this pathway will be associated with congenital myasthenic syndromes or impaired neuromuscular transmission as part of a more severe multisystem disorder. Our findings suggest that treatment with cholinesterase inhibitors may improve muscle function in many of the congenital disorders of glycosylation.


Assuntos
Síndromes Miastênicas Congênitas/genética , Síndromes Miastênicas Congênitas/fisiopatologia , N-Acetilglucosaminiltransferases/genética , Adolescente , Idade de Início , Sequência de Bases , Western Blotting , Criança , Pré-Escolar , Análise Mutacional de DNA , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Mutação , Síndromes Miastênicas Congênitas/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Linhagem , Adulto Jovem
9.
Elife ; 122024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39027984

RESUMO

Amyloid ß (Aß) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aß42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aß42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We conducted kinetic analyses of γ-secretase activity in cell-free systems in the presence of Aß, as well as cell-based and ex vivo assays in neuronal cell lines, neurons, and brain synaptosomes to assess the impact of Aß on γ-secretases. We show that human Aß42 peptides, but neither murine Aß42 nor human Aß17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75, and pan-cadherin. Moreover, Aß42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aß42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aß toxicity in the context of γ-secretase-dependent homeostatic signaling.


Assuntos
Doença de Alzheimer , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides , Neurônios , Transdução de Sinais , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Humanos , Doença de Alzheimer/metabolismo , Animais , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Camundongos , Retroalimentação Fisiológica , Fragmentos de Peptídeos/metabolismo , Linhagem Celular
10.
bioRxiv ; 2023 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-37577527

RESUMO

Amyloid ß (Aß) peptides accumulating in the brain are proposed to trigger Alzheimer's disease (AD). However, molecular cascades underlying their toxicity are poorly defined. Here, we explored a novel hypothesis for Aß42 toxicity that arises from its proven affinity for γ-secretases. We hypothesized that the reported increases in Aß42, particularly in the endolysosomal compartment, promote the establishment of a product feedback inhibitory mechanism on γ-secretases, and thereby impair downstream signaling events. We show that human Aß42 peptides, but neither murine Aß42 nor human Aß17-42 (p3), inhibit γ-secretases and trigger accumulation of unprocessed substrates in neurons, including C-terminal fragments (CTFs) of APP, p75 and pan-cadherin. Moreover, Aß42 treatment dysregulated cellular homeostasis, as shown by the induction of p75-dependent neuronal death in two distinct cellular systems. Our findings raise the possibility that pathological elevations in Aß42 contribute to cellular toxicity via the γ-secretase inhibition, and provide a novel conceptual framework to address Aß toxicity in the context of γ-secretase-dependent homeostatic signaling.

11.
Elife ; 102021 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-33688830

RESUMO

An approach called deep mutational scanning is improving our understanding of amyloid beta aggregation.


Assuntos
Peptídeos beta-Amiloides , Peptídeos beta-Amiloides/genética , Mutação
12.
Neurobiol Aging ; 86: 156-161, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31864759

RESUMO

Presenilin 1 (PS1), the catalytic component of gamma secretase, associates with synaptotagmin 1 (Syt-1). This interaction is decreased in the brains of patients with sporadic Alzheimer's disease. However, it remains unclear how this interaction changes during normal aging. Because aging is a risk factor for Alzheimer's disease, we sought to identify changes in PS1 and Syt-1 association during aging in primary neurons in vitro and mouse brain sections ex vivo. We also tested the effect of aging on the calcium dependence of the interaction by treating neurons aged in vitro with KCl. We found that PS1 and Syt-1 increase their association with age, an effect that is more robust in neuronal processes than cell bodies. Treatment with KCl triggered the interaction in both young and old neurons. Baseline calcium levels and calcium influx in response to KCl treatment were significantly higher in older neurons, which can partially explain the increase in PS1/Syt-1 binding with age. These results suggest a compensatory mechanism during normal aging to offset detrimental age-associated effects.


Assuntos
Encéfalo/metabolismo , Envelhecimento Saudável/genética , Envelhecimento Saudável/metabolismo , Presenilina-1/metabolismo , Sinaptotagmina I/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Animais , Cálcio/metabolismo , Células Cultivadas , Feminino , Humanos , Camundongos Endogâmicos C57BL , Cloreto de Potássio/farmacologia , Ligação Proteica
13.
PLoS One ; 14(12): e0226368, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31830091

RESUMO

It has been revealed that ß-amyloid (Aß) is generated and released from the presynaptic terminals in activity-dependent manner. However, molecules modulating the presynaptic Aß generation remain elusive. Here we test the hypothesis that Synapsin 1 (Syn1) may acts as a modulator of the Aß production. Using biochemical and Förster resonance energy transfer (FRET)-based imaging approaches we have found that Syn1 knock down decreases, whereas (over)expression of Syn1 in cells increases the Aß levels. Mechanistically, Syn1 does not seem to affect the activity of Presenilin 1 (PS1)/γ-secretase, PS1 conformation, or the proximity between PS1 and amyloid precursor protein (APP). However, we found that Syn1 is involved in up-regulation of the ß-site APP cleaving enzyme 1 (BACE1)/ß-secretase activity and increases the APP/BACE1 interaction. Therefore, we conclude that Syn1 may promote Aß production via the modulation of BACE1.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Regulação da Expressão Gênica , Presenilina-1/metabolismo , Sinapsinas/metabolismo , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Presenilina-1/genética , Sinapsinas/genética
14.
Ageing Res Rev ; 49: 125-143, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30391753

RESUMO

microRNAs (miRNAs) have been extensively studied as potential biomarkers for Alzheimer's disease (AD). Their profiles have been analyzed in blood, cerebrospinal fluid (CSF) and brain tissue. However, due to the high variability between the reported data, stemming from the lack of methodological standardization and the heterogeneity of AD, the most promising miRNA biomarker candidates have not been selected. Our literature review shows that out of 137 miRNAs found to be altered in AD blood, 36 have been replicated in at least one independent study, and out of 166 miRNAs reported as differential in AD CSF, 13 have been repeatedly found. Only 3 miRNAs have been consistently reported as altered in three analyzed specimens: blood, CSF and the brain (hsa-miR-146a, hsa-miR-125b, hsa-miR-135a). Nonetheless, all 36 repeatedly differential miRNAs in AD blood are promising as components of the diagnostic panel. Given their predicted functions, such miRNA panel may report multiple pathways contributing to AD pathology, enabling the design of personalized therapies. In addition, the analysis revealed that the miRNAs dysregulated in AD overlap highly with miRNAs implicated in cancer. However, the directions of the miRNA changes are usually opposite in cancer and AD, indicative of an epigenetic trade-off between the two diseases.


Assuntos
Doença de Alzheimer/metabolismo , MicroRNAs/metabolismo , Neoplasias/metabolismo , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/genética , Biomarcadores/metabolismo , Encéfalo/metabolismo , Epigênese Genética , Humanos , Neoplasias/genética
15.
Mol Neurobiol ; 55(3): 2275-2284, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28332150

RESUMO

Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid ß (Aß) species. The assembly of Aß into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aß42/43) to shorter Aß (Aß40) peptides. The ratio of Aß42 to Aß40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aß peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/química , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/química , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Animais , Humanos , Mutação/fisiologia , Presenilina-1/química , Presenilina-1/genética , Conformação Proteica
16.
Sci Rep ; 8(1): 8718, 2018 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-29880815

RESUMO

Neuronal hyperactivity is one of the earliest events observed in Alzheimer's disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aß pathology.


Assuntos
Doença de Alzheimer/metabolismo , Transportador 2 de Aminoácido Excitatório/metabolismo , Proteínas de Transporte de Glutamato da Membrana Plasmática/metabolismo , Presenilina-1/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Células Cultivadas , Transportador 2 de Aminoácido Excitatório/genética , Proteínas de Transporte de Glutamato da Membrana Plasmática/genética , Humanos , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Presenilina-1/genética , Proteólise
17.
Oxid Med Cell Longev ; 2018: 6435861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29636850

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia and a great socioeconomic burden in the aging society. Compelling evidence demonstrates that molecular change characteristics for AD, such as oxidative stress and amyloid ß (Aß) oligomerization, precede by decades the onset of clinical dementia and that the disease represents a biological and clinical continuum of stages, from asymptomatic to severely impaired. Nevertheless, the sequence of the early molecular alterations and the interplay between them are incompletely understood. This review presents current knowledge about the oxidative stress-induced impairments and compromised oxidative stress defense mechanisms in AD brain and the cross-talk between various pathophysiological insults, with the focus on excessive reactive oxygen species (ROS) generation and Aß overproduction at the early stages of the disease. Prospects for AD therapies targeting oxidant/antioxidant imbalance are being discussed, as well as for the development of novel oxidative stress-related, blood-based biomarkers for early, noninvasive AD diagnostics.


Assuntos
Doença de Alzheimer/diagnóstico , Antioxidantes/uso terapêutico , Biomarcadores/química , Oxidantes/uso terapêutico , Doença de Alzheimer/patologia , Doença de Alzheimer/terapia , Humanos
18.
Rev Sci Instrum ; 89(5): 053705, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29864842

RESUMO

We have developed an imaging technique which combines selective plane illumination microscopy with time-domain fluorescence lifetime imaging microscopy (SPIM-FLIM) for three-dimensional volumetric imaging of cleared mouse brains with micro- to mesoscopic resolution. The main features of the microscope include a wavelength-adjustable pulsed laser source (Ti:sapphire) (near-infrared) laser, a BiBO frequency-doubling photonic crystal, a liquid chamber, an electrically focus-tunable lens, a cuvette based sample holder, and an air (dry) objective lens. The performance of the system was evaluated with a lifetime reference dye and micro-bead phantom measurements. Intensity and lifetime maps of three-dimensional human embryonic kidney (HEK) cell culture samples and cleared mouse brain samples expressing green fluorescent protein (GFP) (donor only) and green and red fluorescent protein [positive Förster (fluorescence) resonance energy transfer] were acquired. The results show that the SPIM-FLIM system can be used for sample sizes ranging from single cells to whole mouse organs and can serve as a powerful tool for medical and biological research.


Assuntos
Encéfalo/citologia , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Microscopia/instrumentação , Microscopia/métodos , Animais , Técnicas de Cultura de Células , Dependovirus/genética , Desenho de Equipamento , Transferência Ressonante de Energia de Fluorescência , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HEK293 , Humanos , Lasers , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Microesferas , Fibras Ópticas , Imagens de Fantasmas , Alicerces Teciduais , Proteína Vermelha Fluorescente
19.
Mol Neurodegener ; 12(1): 15, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193235

RESUMO

BACKGROUND: Alzheimer's disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid ß (Aß) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. METHODS: PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student's t-test, Mann-Whitney's U-test or two-way ANOVA followed by a Bonferroni's post-test. RESULTS: We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins' expression level, triggers "pathogenic" conformational shift of PS1, and consequent increase in the Aß42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote "protective" PS1 conformation. CONCLUSIONS: The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aß42/40 ratio, and impaired exocytosis.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Exocitose/fisiologia , Presenilina-1/metabolismo , Sinaptotagmina I/metabolismo , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Células Cultivadas , Humanos , Imuno-Histoquímica/métodos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Sinapses/metabolismo
20.
Elife ; 62017 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-28132667

RESUMO

The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its 'phosphorylated' and 'dephosphorylated' states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer's disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic 'closed' conformation, and resulting increase in the Aß42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment.


Assuntos
Doença de Alzheimer/patologia , Presenilina-1/metabolismo , Processamento de Proteína Pós-Traducional , Animais , Modelos Animais de Doenças , Transferência Ressonante de Energia de Fluorescência , Camundongos , Imagem Óptica , Fosforilação , Presenilina-1/química , Conformação Proteica , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA