Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 65(2): 296-309, 2017 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-28065600

RESUMO

In mammalian cells, histone deacetylase (HDAC) and Sirtuin (SIRT) are two families responsible for removing acetyl groups from acetylated proteins. Here, we describe protein deacetylation coupled with deacetylimination as a function of lysyl oxidase (LOX) family members. LOX-like 3 (Loxl3) associates with Stat3 in the nucleus to deacetylate and deacetyliminate Stat3 on multiple acetyl-lysine sites. Surprisingly, Loxl3 N-terminal scavenger receptor cysteine-rich (SRCR) repeats, rather than the C-terminal oxidase catalytic domain, represent the major deacetylase/deacetyliminase activity. Loxl3-mediated deacetylation/deacetylimination disrupts Stat3 dimerization, abolishes Stat3 transcription activity, and restricts cell proliferation. In Loxl3-/- mice, Stat3 is constitutively acetylated and naive CD4+ T cells are potentiated in Th17/Treg cell differentiation. When overexpressed, the SRCR repeats from other LOX family members can catalyze protein deacetylation/deacetylimination. Thus, our findings delineate a hitherto-unknown mechanism of protein deacetylation and deacetylimination catalyzed by lysyl oxidases.


Assuntos
Aminoácido Oxirredutases/metabolismo , Linfócitos T CD4-Positivos/enzimologia , Colite/enzimologia , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT3/metabolismo , Acetilação , Aminoácido Oxirredutases/deficiência , Aminoácido Oxirredutases/genética , Animais , Linfócitos T CD4-Positivos/imunologia , Catálise , Diferenciação Celular , Núcleo Celular/enzimologia , Proliferação de Células , Colite/genética , Colite/imunologia , Modelos Animais de Doenças , Genótipo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Domínios Proteicos , Multimerização Proteica , Interferência de RNA , Fator de Transcrição STAT3/genética , Linfócitos T Reguladores/enzimologia , Linfócitos T Reguladores/imunologia , Células Th17/enzimologia , Células Th17/imunologia , Transcrição Gênica , Transfecção
2.
EMBO J ; 38(6)2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770344

RESUMO

T helper 17 (Th17)-cell differentiation triggered by interleukin-6 (IL-6) via STAT3 activation promotes inflammation in inflammatory bowel disease (IBD) patients. However, leukemia inhibitory factor (LIF), an IL-6 family cytokine, restricts inflammation by blocking Th17-cell differentiation via an unknown mechanism. Here, we report that microbiota dysregulation promotes LIF secretion by intestinal epithelial cells (IECs) in a mouse colitis model. LIF greatly activates STAT4 phosphorylation on multiple SPXX elements within the C-terminal transcription regulation domain. STAT4 and STAT3 act reciprocally on both canonical cis-inducible elements (SIEs) and noncanonical "AGG" elements at different loci. In lamina propria lymphocytes (LPLs), STAT4 activation by LIF blocks STAT3-dependent Il17a/Il17f promoter activation, whereas in IECs, LIF bypasses the extraordinarily low level of STAT4 to induce YAP gene expression via STAT3 activation. In addition, we found that the administration of LIF is sufficient to restore microbiome homeostasis. Thus, LIF effectively inhibits Th17 accumulation and promotes repair of damaged intestinal epithelium in inflamed colon, serves as a potential therapy for IBD.


Assuntos
Colite/prevenção & controle , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/prevenção & controle , Mucosa Intestinal/efeitos dos fármacos , Fator Inibidor de Leucemia/farmacologia , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT4/fisiologia , Animais , Células Cultivadas , Colite/induzido quimicamente , Colite/imunologia , Inflamação/induzido quimicamente , Inflamação/imunologia , Interleucina-17/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/genética , Transdução de Sinais , Células Th17/imunologia
3.
Cancer Res ; 82(23): 4400-4413, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36197797

RESUMO

Lysyl oxidase-like 2 (LOXL2) is a member of the scavenger receptor cysteine-rich (SRCR) repeat carrying LOX family. Although LOXL2 is suspected to be involved in histone association and chromatin modification, the role of LOXL2 in epigenetic regulation during tumorigenesis and cancer progression remains unclear. Here, we report that nuclear LOXL2 associates with histone H3 and catalyzes H3K36ac deacetylation and deacetylimination. Both the N-terminal SRCR repeats and the C-terminal catalytic domain of LOXL2 carry redundant deacetylase catalytic activity. Overexpression of LOXL2 markedly reduced H3K36 acetylation and blocked H3K36ac-dependent transcription of genes, including c-MYC, CCND1, HIF1A, and CD44. Consequently, LOXL2 overexpression reduced cancer cell proliferation in vitro and inhibited xenograft tumor growth in vivo. In contrast, LOXL2 deficiency resulted in increased H3K36 acetylation and aberrant expression of H3K36ac-dependent genes involved in multiple oncogenic signaling pathways. Female LOXL2-deficient mice spontaneously developed uterine hypertrophy and uterine carcinoma. Moreover, silencing LOXL2 in cancer cells enhanced tumor progression and reduced the efficacy of cisplatin and anti-programmed cell death 1 (PD-1) combination therapy. Clinically, low nuclear LOXL2 expression and high H3K36ac levels corresponded to poor prognosis in uterine endometrial carcinoma patients. These results suggest that nuclear LOXL2 restricts cancer development in the female reproductive system via the regulation of H3K36ac deacetylation. SIGNIFICANCE: LOXL2 loss reprograms the epigenetic landscape to promote uterine cancer initiation and progression and repress the efficacy of anti-PD-1 immunotherapy, indicating that LOXL2 is a tumor suppressor.


Assuntos
Aminoácido Oxirredutases , Epigênese Genética , Humanos , Camundongos , Feminino , Animais , Aminoácido Oxirredutases/genética , Aminoácido Oxirredutases/metabolismo , Acetilação , Histonas/metabolismo , Hipertrofia/genética , Expressão Gênica
4.
Sci Rep ; 6: 39517, 2016 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-28004755

RESUMO

Cytoplasmic STAT3, after activation by growth factors, translocates to different subcellular compartments, including nuclei and mitochondria, where it carries out different biological functions. However, the precise mechanism by which STAT3 undergoes mitochondrial translocation and subsequently regulates the tricarboxylic acid (TCA) cycle-electron transport chain (ETC) remains poorly understood. Here, we clarify this process by visualizing STAT3 acetylation in starved cells after serum reintroduction or insulin stimulation. CBP-acetylated STAT3 undergoes mitochondrial translocation in response to serum introduction or insulin stimulation. In mitochondria, STAT3 associates with the pyruvate dehydrogenase complex E1 (PDC-E1) and subsequently accelerates the conversion of pyruvate to acetyl-CoA, elevates the mitochondrial membrane potential, and promotes ATP synthesis. SIRT5 deacetylates STAT3, thereby inhibiting its function in mitochondrial pyruvate metabolism. In the A549 lung cancer cell line, constitutively acetylated STAT3 localizes to mitochondria, where it maintains the mitochondrial membrane potential and ATP synthesis in an active state.


Assuntos
Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Transporte Proteico , Piruvatos/metabolismo , Fator de Transcrição STAT3/metabolismo , Células A549 , Acetilcoenzima A/metabolismo , Acetilação , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Ciclo do Ácido Cítrico , Citoplasma/metabolismo , Fibroblastos/metabolismo , Células HEK293 , Células HeLa , Humanos , Insulina/metabolismo , Camundongos , Oxirredução , Processamento de Proteína Pós-Traducional , Complexo Piruvato Desidrogenase/metabolismo , Ácido Pirúvico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA