RESUMO
The inner nuclear membrane harbors a unique set of membrane proteins, many of which interact with nuclear intermediate filaments and chromatin components and thus play an important role in nuclear organization and gene expression regulation. These membrane proteins have to be constantly transported into the nucleus from their sites of synthesis in the ER to match the growth of the nuclear membrane during interphase. Many mechanisms have evolved to enable translocation of these proteins to the nucleus. The full range of mechanisms goes from rare autophagy events to regulated translocation using the nuclear pore complexes. Though mechanisms involving nuclear pores are predominant, within this group an enormous mechanistic range is observed from free diffusion through the peripheral channels to many distinct mechanisms involving different nucleoporins and other components of the soluble protein transport machinery in the central channels. This review aims to provide a comprehensive insight into this mechanistic diversity.
Assuntos
Núcleo Celular/metabolismo , Retículo Endoplasmático/fisiologia , Proteínas de Membrana/metabolismo , Modelos Biológicos , Modelos Moleculares , Poro Nuclear/metabolismo , Transporte Ativo do Núcleo Celular , Núcleo Celular/fisiologiaRESUMO
Nuclear envelopes from liver and a neuroblastoma cell line have previously been analyzed by proteomics; however, most diseases associated with the nuclear envelope affect muscle. To determine whether muscle has unique nuclear envelope proteins, rat skeletal muscle nuclear envelopes were prepared and analyzed by multidimensional protein identification technology. Many novel muscle-specific proteins were identified that did not appear in previous nuclear envelope data sets. Nuclear envelope residence was confirmed for 11 of these by expression of fusion proteins and by antibody staining of muscle tissue cryosections. Moreover, transcript levels for several of the newly identified nuclear envelope transmembrane proteins increased during muscle differentiation using mouse and human in vitro model systems. Some of these proteins tracked with microtubules at the nuclear surface in interphase cells and accumulated at the base of the microtubule spindle in mitotic cells, suggesting they may associate with complexes that connect the nucleus to the cytoskeleton. The finding of tissue-specific proteins in the skeletal muscle nuclear envelope proteome argues the importance of analyzing nuclear envelopes from all tissues linked to disease and suggests that general investigation of tissue differences in organellar proteomes might yield critical insights.
Assuntos
Citoesqueleto/metabolismo , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Diferenciação Celular , Fracionamento Celular , Linhagem Celular , Humanos , Espectrometria de Massas , Proteínas de Membrana/química , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/ultraestrutura , Membrana Nuclear/ultraestrutura , Proteínas Nucleares/química , Análise de Sequência com Séries de Oligonucleotídeos , Especificidade de Órgãos , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos TestesRESUMO
A favored hypothesis to explain the pathology underlying nuclear envelopathies is that mutations in nuclear envelope proteins alter genome/chromatin organization and thus gene expression. To identify nuclear envelope proteins that play roles in genome organization, we analyzed nuclear envelopes from resting and phytohemagglutinin-activated leukocytes because leukocytes have a particularly high density of peripheral chromatin that undergoes significant reorganization upon such activation. Thus, nuclear envelopes were isolated from leukocytes in the two states and analyzed by multidimensional protein identification technology using an approach that used expected contaminating membranes as subtractive fractions. A total of 3351 proteins were identified between both nuclear envelope data sets among which were 87 putative nuclear envelope transmembrane proteins (NETs) that were not identified in a previous proteomics analysis of liver nuclear envelopes. Nuclear envelope localization was confirmed for 11 new NETs using tagged fusion proteins and antibodies on spleen cryosections. 27% of the new proteins identified were unique to one or the other of the two leukocyte states. Differences in expression between activated and resting leukocytes were confirmed for some NETs by RT-PCR, and most of these proteins appear to only be expressed in certain types of blood cells. Several known proteins identified in both data sets have functions in chromatin organization and gene regulation. To test whether the novel NETs identified might include those that also regulate chromatin, nine were run through two screens for different chromatin effects. One screen found two NETs that can recruit a specific gene locus to the nuclear periphery, and the second found a different NET that promotes chromatin condensation. The variation in the protein milieu with pharmacological activation of the same cell population and consequences for gene regulation suggest that the nuclear envelope is a complex regulatory system with significant influences on genome organization.
Assuntos
Genoma Humano , Leucócitos/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteoma , Animais , Western Blotting , Linhagem Celular , Humanos , Microscopia de Fluorescência , RatosRESUMO
Background: Lower survival rates for many cancer types correlate with changes in nuclear size/scaling in a tumor-type/tissue-specific manner. Hypothesizing that such changes might confer an advantage to tumor cells, we aimed at the identification of commercially available compounds to guide further mechanistic studies. We therefore screened for Food and Drug Administration (FDA)/European Medicines Agency (EMA)-approved compounds that reverse the direction of characteristic tumor nuclear size changes in PC3, HCT116, and H1299 cell lines reflecting, respectively, prostate adenocarcinoma, colonic adenocarcinoma, and small-cell squamous lung cancer. Results: We found distinct, largely nonoverlapping sets of compounds that rectify nuclear size changes for each tumor cell line. Several classes of compounds including, e.g., serotonin uptake inhibitors, cyclo-oxygenase inhibitors, ß-adrenergic receptor agonists, and Na+/K+ ATPase inhibitors, displayed coherent nuclear size phenotypes focused on a particular cell line or across cell lines and treatment conditions. Several compounds from classes far afield from current chemotherapy regimens were also identified. Seven nuclear size-rectifying compounds selected for further investigation all inhibited cell migration and/or invasion. Conclusions: Our study provides (a) proof of concept that nuclear size might be a valuable target to reduce cell migration/invasion in cancer treatment and (b) the most thorough collection of tool compounds to date reversing nuclear size changes specific to individual cancer-type cell lines. Although these compounds still need to be tested in primary cancer cells, the cell line-specific nuclear size and migration/invasion responses to particular drug classes suggest that cancer type-specific nuclear size rectifiers may help reduce metastatic spread.
Assuntos
Adenocarcinoma , Neoplasias da Próstata , Linhagem Celular Tumoral , Movimento Celular , Humanos , Masculino , Invasividade Neoplásica/genética , Invasividade Neoplásica/prevenção & controle , Neoplasias da Próstata/tratamento farmacológicoRESUMO
Nuclear envelope complexity is expanding with respect to identification of protein components. Here we test the validity of proteomics results that identified 67 novel predicted nuclear envelope transmembrane proteins (NETs) from liver by directly comparing 30 as tagged fusions using targeting assays. This confirmed 21 as NETs, but 4 only targeted in certain cell types, underscoring the complexity of interactions that tether NETs to the nuclear envelope. Four NETs accumulated at the nuclear rim in normal fibroblasts but not in fibroblasts lacking lamin A, suggesting involvement of lamin A in tethering them in the nucleus. However, intriguingly, for the NETs tested alternative mechanisms for nuclear envelope retention could be found in Jurkat cells that normally lack lamin A. This study expands by a factor of three the number of liver NETs analyzed, bringing the total confirmed to 31, and shows that several have multiple mechanisms for nuclear envelope retention.
Assuntos
Lamina Tipo A/fisiologia , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Animais , Western Blotting , Núcleo Celular/metabolismo , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/metabolismo , Hepatócitos/citologia , Hepatócitos/metabolismo , Humanos , Rim/citologia , Rim/metabolismo , Camundongos , Camundongos Knockout , Mioblastos/citologia , Mioblastos/metabolismo , Transporte Proteico , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
The nuclear periphery is a specialized environment in the nucleus that contributes to genome organization and correspondingly to gene regulation. Mammalian chromosomes and certain genes occupy defined positions within the nucleus that are heritable and tissue specific. Genes located at the nuclear periphery tend to be inactive and this negative regulation can be reversed when they are released from the periphery in certain differentiation systems. Recent work using specially designed systems has shown that genes can be artificially tethered to the nuclear periphery by an affinity mechanism. The next important step will be to identify the endogenous NE (nuclear envelope) and chromatin proteins that participate in affinity-driven NE tethering and determine how they are regulated.
Assuntos
Cromatina/metabolismo , Regulação da Expressão Gênica , Genoma , Membrana Nuclear/metabolismo , Animais , Núcleo Celular/metabolismo , HumanosRESUMO
Tissue-specific patterns of radial genome organization contribute to genome regulation and can be established by nuclear envelope proteins. Studies in this area often use cancer cell lines, and it is unclear how well such systems recapitulate genome organization of primary cells or animal tissues; so, we sought to investigate radial genome organization in primary liver tissue hepatocytes. Here, we have used a NET47/Tm7sf2-/- liver model to show that manipulating one of these nuclear membrane proteins is sufficient to alter tissue-specific gene positioning and expression. Dam-LaminB1 global profiling in primary liver cells shows that nearly all the genes under such positional regulation are related to/important for liver function. Interestingly, Tm7sf2 is a paralog of the HP1-binding nuclear membrane protein LBR that, like Tm7sf2, also has an enzymatic function in sterol reduction. Fmo3 gene/locus radial mislocalization could be rescued with human wild-type, but not TM7SF2 mutants lacking the sterol reductase function. One central pathway affected is the cholesterol synthesis pathway. Within this pathway, both Cyp51 and Msmo1 are under Tm7sf2 positional and expression regulation. Other consequences of the loss of Tm7sf2 included weight gain, insulin sensitivity, and reduced levels of active Akt kinase indicating additional pathways under its regulation, several of which are highlighted by mispositioning genes. This study emphasizes the importance for tissue-specific radial genome organization in tissue function and the value of studying genome organization in animal tissues and primary cells over cell lines.
RESUMO
Claudins are the critical transmembrane proteins in tight junctions. Claudin-5, for instance, prevents paracellular permeation of small molecules. However, the molecular interaction mechanism is unknown. Hence, the claudin-claudin interaction and tight junction strand formation were investigated using systematic single mutations. Claudin-5 mutants transfected into tight junction-free cells demonstrated that the extracellular loop 2 is involved in strand formation via trans-interaction, but not via polymerization, along the plasma membrane of one cell. Three phenotypes were obtained: the tight junction type (wild-type-like trans- and cis-interaction; the disjunction type (blocked trans-interaction); the intracellular type (disturbed folding). Combining site-directed mutagenesis, live-cell imaging-, electron microscopy-, and molecular modeling data led to an antiparallel homodimer homology model of the loop. These data for the first time explain how two claudins hold onto each other and constrict the paracellular space. The intermolecular interface includes aromatic (F147, Y148, Y158) and hydrophilic (Q156, E159) residues. The aromatic residues form a strong binding core between two loops from opposing cells. Since nearly all these residues are conserved in most claudins, our findings are of general relevance for all classical claudins. On the basis of the data we have established a novel molecular concept for tight junction formation.
Assuntos
Proteínas de Membrana/metabolismo , Junções Íntimas , Substituição de Aminoácidos , Linhagem Celular , Claudina-5 , Transferência Ressonante de Energia de Fluorescência , Humanos , Imuno-Histoquímica , Proteínas de Membrana/química , Proteínas de Membrana/genética , Microscopia Eletrônica de Transmissão , Mutagênese Sítio-Dirigida , Frações Subcelulares/metabolismoRESUMO
Work in the nuclear transport field has led to an incredibly detailed description of protein translocation through the central channel of the nuclear pore complex, yet the mechanism by which nuclear envelope transmembrane proteins reach the inner nuclear membrane after synthesis in the endoplasmic reticulum is still hotly debated. Three different translocation models have gained experimental support: (i) simple lateral diffusion through the nuclear envelope membrane system; (ii) translocation by vesicle fusion events; and (iii) a variation on classical transport mediated by the nuclear pore complex. Although these models appear to be mutually exclusive, in the present paper we argue that they probably all function for different inner nuclear membrane proteins according to their unique characteristics.
Assuntos
Membrana Nuclear/metabolismo , Animais , Difusão , Humanos , Modelos Biológicos , Poro Nuclear/metabolismo , Transporte Proteico , Vesículas TransportadorasRESUMO
Different cell types exhibit distinct patterns of 3D genome organization that correlate with changes in gene expression in tissue and differentiation systems. Several tissue-specific nuclear envelope transmembrane proteins (NETs) have been found to influence the spatial positioning of genes and chromosomes that normally occurs during tissue differentiation. Here we study 3 such NETs: NET29, NET39, and NET47, which are expressed preferentially in fat, muscle and liver, respectively. We found that even when exogenously expressed in a heterologous system they can specify particular genome organization patterns and alter gene expression. Each NET affected largely different subsets of genes. Notably, the liver-specific NET47 upregulated many genes in HT1080 fibroblast cells that are normally upregulated in hepatogenesis, showing that tissue-specific NETs can favor expression patterns associated with the tissue where the NET is normally expressed. Similarly, global profiling of peripheral chromatin after exogenous expression of these NETs using lamin B1 DamID revealed that each NET affected the nuclear positioning of distinct sets of genomic regions with a significant tissue-specific component. Thus NET influences on genome organization can contribute to gene expression changes associated with differentiation even in the absence of other factors and overt cellular differentiation changes.
Assuntos
Genoma Humano/genética , Proteínas de Membrana/genética , Membrana Nuclear/metabolismo , Diferenciação Celular , Linhagem Celular , Cromossomos Humanos/genética , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Fígado/citologia , Especificidade de ÓrgãosRESUMO
Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.
Assuntos
Cromatina/metabolismo , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Acetilação , Histonas/metabolismo , Humanos , Imunidade Inata , MetilaçãoRESUMO
Measuring dynamics of nuclear proteins is complicated by the fact that many DNA- and chromatin-binding proteins have separate nucleoplasmic and nuclear membrane pools with distinct mobilities. Moreover, when measuring recoveries in FRAP experiments, it is important to be aware that the continuous transport of new protein through the nuclear pore complexes means that fluorescence recovery comes from both dynamic exchange of protein already within the nucleus and newly imported protein. Here we describe fluorescence recovery after photobleaching and photoactivation techniques designed to track nuclear membrane proteins and some methods we have developed that may help to distinguish these various pools. A combination of these approaches with standard FRAP approaches is necessary to understand the true dynamics of nuclear proteins.
Assuntos
Recuperação de Fluorescência Após Fotodegradação/métodos , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Animais , Células Cultivadas , Proteínas de Fluorescência Verde/genética , Humanos , Microscopia Confocal/métodos , Membrana Nuclear/metabolismo , Poro Nuclear/metabolismo , Análise de Célula Única/métodosRESUMO
Nuclear envelope links to inherited disease gave the conundrum of how mutations in near-ubiquitous proteins can yield many distinct pathologies, each focused in different tissues. One conundrum-resolving hypothesis is that tissue-specific partner proteins mediate these pathologies. Such partner proteins may have now been identified with recent proteome studies determining nuclear envelope composition in different tissues. These studies revealed that the majority of the total nuclear envelope proteins are tissue restricted in their expression. Moreover, functions have been found for a number these tissue-restricted nuclear envelope proteins that fit with mechanisms proposed to explain how the nuclear envelope could mediate disease, including defects in mechanical stability, cell cycle regulation, signaling, genome organization, gene expression, nucleocytoplasmic transport, and differentiation. The wide range of functions to which these proteins contribute is consistent with not only their involvement in tissue-specific nuclear envelope disease pathologies, but also tissue evolution.
Assuntos
Núcleo Celular/metabolismo , Membrana Nuclear/química , Especificidade de Órgãos/fisiologia , Transporte Ativo do Núcleo Celular , Animais , Ciclo Celular/fisiologia , Diferenciação Celular/fisiologia , Evolução Molecular , Humanos , Proteínas de Membrana/metabolismo , Modelos Animais , Proteínas Nucleares/metabolismo , Proteoma/metabolismo , Transdução de SinaisRESUMO
BACKGROUND: Different cell types have distinctive patterns of chromosome positioning in the nucleus. Although ectopic affinity-tethering of specific loci can be used to relocate chromosomes to the nuclear periphery, endogenous nuclear envelope proteins that control such a mechanism in mammalian cells have yet to be widely identified. RESULTS: To search for such proteins, 23 nuclear envelope transmembrane proteins were screened for their ability to promote peripheral localization of human chromosomes in HT1080 fibroblasts. Five of these proteins had strong effects on chromosome 5, but individual proteins affected different subsets of chromosomes. The repositioning effects were reversible and the proteins with effects all exhibited highly tissue-restricted patterns of expression. Depletion of two nuclear envelope transmembrane proteins that were preferentially expressed in liver each reduced the normal peripheral positioning of chromosome 5 in liver cells. CONCLUSIONS: The discovery of nuclear envelope transmembrane proteins that can modulate chromosome position and have restricted patterns of expression may enable dissection of the functional relevance of tissue-specific patterns of radial chromosome positioning.
Assuntos
Núcleo Celular/metabolismo , Posicionamento Cromossômico , Proteínas de Membrana/metabolismo , Membrana Nuclear/metabolismo , Proteínas Nucleares/metabolismo , Cromossomos Humanos/metabolismo , Células Hep G2 , Humanos , Proteínas de Membrana/genética , Proteínas Nucleares/genética , Especificidade de ÓrgãosRESUMO
One hypothesis to explain how mutations in the same nuclear envelope proteins yield pathologies focused in distinct tissues is that as yet unidentified tissue-specific partners mediate the disease pathologies. The nuclear envelope proteome was recently determined from leukocytes and muscle. Here the same methodology is applied to liver and a direct comparison of the liver, muscle and leukocyte data sets is presented. At least 74 novel transmembrane proteins identified in these studies have been directly confirmed at the nuclear envelope. Within this set, RT-PCR, western blot and staining of tissue cryosections confirms that the protein complement of the nuclear envelope is clearly distinct from one tissue to another. Bioinformatics reveals similar divergence between tissues across the larger data sets. For proteins acting in complexes according to interactome data, the whole complex often exhibited the same tissue-specificity. Other tissue-specific nuclear envelope proteins identified were known proteins with functions in signaling and gene regulation. The high tissue specificity in the nuclear envelope likely underlies the complex disease pathologies and argues that all organelle proteomes warrant re-examination in multiple tissues.
Assuntos
Membrana Nuclear/metabolismo , Proteoma/metabolismo , Animais , Western Blotting , Biologia Computacional , Humanos , Leucócitos/metabolismo , Leucócitos/patologia , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Especificidade de Órgãos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
In the past 15 years our perception of nuclear envelope function has evolved perhaps nearly as much as the nuclear envelope itself evolved in the last 3 billion years. Historically viewed as little more than a diffusion barrier between the cytoplasm and the nucleoplasm, the nuclear envelope is now known to have roles in the cell cycle, cytoskeletal stability and cell migration, genome architecture, epigenetics, regulation of transcription, splicing, and DNA replication. Here we will review both what is known and what is speculated about the role of the nuclear envelope in genome organization, particularly with respect to the positioning and repositioning of genes and chromosomes within the nucleus during differentiation.
Assuntos
Cromatina/metabolismo , Membrana Nuclear/metabolismo , Núcleo Celular/fisiologia , Cromossomos/fisiologia , Poro Nuclear/fisiologia , Proteínas Nucleares/metabolismoRESUMO
The nuclear envelope contains >100 transmembrane proteins that continuously exchange with the endoplasmic reticulum and move within the nuclear membranes. To better understand the organization and dynamics of this system, we compared the trafficking of 15 integral nuclear envelope proteins using FRAP. A surprising 30-fold range of mobilities was observed. The dynamic behavior of several of these proteins was also analyzed after depletion of ATP and/or Ran, two functions implicated in endoplasmic reticulum-inner nuclear membrane translocation. This revealed that ATP- and Ran-dependent translocation mechanisms are distinct and not used by all inner nuclear membrane proteins. The Ran-dependent mechanism requires the phenylalanine-glycine (FG)-nucleoporin Nup35, which is consistent with use of the nuclear pore complex peripheral channels. Intriguingly, the addition of FGs to membrane proteins reduces FRAP recovery times, and this also depends on Nup35. Modeling of three proteins that were unaffected by either ATP or Ran depletion indicates that the wide range in mobilities could be explained by differences in binding affinities in the inner nuclear membrane.