Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Appl Biochem ; 71(1): 81-95, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37822167

RESUMO

Cancer continues to be leading cause of morbidity and mortality despite decades of research and advancement in chemotherapy. Most tumors can be reduced via standard oncology treatments, such as chemotherapy, radiotherapy, and surgical resection, and they frequently recur. Significant progress has been made since targeted cancer therapy inception in creation of medications that exhibit improved tumor-selective action. Particularly in preclinical and clinical investigations, fusion proteins have shown strong activity and improved treatment outcomes for a number of human cancers. Synergistically combining many proteins into one complex allows the creation of synthetic fusion proteins with enhanced characteristics or new capabilities. Signal transduction pathways are important for onset, development, and spread of cancer. As result, signaling molecules are desirable targets for cancer therapies, and significant effort has been made into developing fusion proteins that would act as inhibitors of these pathways. A wide range of biotechnological and medicinal applications are made possible by fusion of protein domains that improves bioactivities or creates new functional combinations. Such proteins may function as immune effectors cell recruiters to tumors or as decoy receptors for various ligands. In this review article, we have outlined the standard methods for creating fusion proteins and covered the applications of fusion proteins in treatment of cancer. This article also highlights the role of fusion proteins in targeting the signaling pathways involved in cancer for effective treatment.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Biotecnologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
2.
Ecotoxicol Environ Saf ; 270: 115916, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38171108

RESUMO

Mercury (Hg) contamination is acknowledged as a global issue and has generated concerns globally due to its toxicity and persistence. Tunable surface-active sites (SASs) are one of the key features of efficient BCs for Hg remediation, and detailed documentation of their interactions with metal ions in soil medium is essential to support the applications of functionalized BC for Hg remediation. Although a specific active site exhibits identical behavior during the adsorption process, a systematic documentation of their syntheses and interactions with various metal ions in soil medium is crucial to promote the applications of functionalized biochars in Hg remediation. Hence, we summarized the BC's impact on Hg mobility in soils and discussed the potential mechanisms and role of various SASs of BC for Hg remediation, including oxygen-, nitrogen-, sulfur-, and X (chlorine, bromine, iodine)- functional groups (FGs), surface area, pores and pH. The review also categorized synthesis routes to introduce oxygen, nitrogen, and sulfur to BC surfaces to enhance their Hg adsorptive properties. Last but not the least, the direct mechanisms (e.g., Hg- BC binding) and indirect mechanisms (i.e., BC has a significant impact on the cycling of sulfur and thus the Hg-soil binding) that can be used to explain the adverse effects of BC on plants and microorganisms, as well as other related consequences and risk reduction strategies were highlighted. The future perspective will focus on functional BC for multiple heavy metal remediation and other potential applications; hence, future work should focus on designing intelligent/artificial BC for multiple purposes.


Assuntos
Recuperação e Remediação Ambiental , Mercúrio , Poluentes do Solo , Mercúrio/análise , Domínio Catalítico , Poluentes do Solo/análise , Carvão Vegetal/química , Solo/química , Enxofre , Íons , Nitrogênio , Oxigênio
3.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460406

RESUMO

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Assuntos
Ammi , Poluentes do Solo , Titânio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análise , Ecossistema , Estresse Oxidativo , Solo , Expressão Gênica , Poluentes do Solo/análise
4.
Funct Integr Genomics ; 23(3): 283, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37642792

RESUMO

Enhancing the resilience of plants to abiotic stresses, such as drought, salinity, heat, and cold, is crucial for ensuring global food security challenge in the context of climate change. The adverse effects of climate change, characterized by rising temperatures, shifting rainfall patterns, and increased frequency of extreme weather events, pose significant threats to agricultural systems worldwide. Genetic modification strategies offer promising approaches to develop crops with improved abiotic stress tolerance. This review article provides a comprehensive overview of various genetic modification techniques employed to enhance plant resilience. These strategies include the introduction of stress-responsive genes, transcription factors, and regulatory elements to enhance stress signaling pathways. Additionally, the manipulation of hormone signaling pathways, osmoprotectant accumulation, and antioxidant defense mechanisms is discussed. The use of genome editing tools, such as CRISPR-Cas9, for precise modification of target genes related to stress tolerance is also explored. Furthermore, the challenges and future prospects of genetic modification for abiotic stress tolerance are highlighted. Understanding and harnessing the potential of genetic modification strategies can contribute to the development of resilient crop varieties capable of withstanding adverse environmental conditions caused by climate change, thereby ensuring sustainable agricultural productivity and food security.


Assuntos
Mudança Climática , Edição de Genes , Produtos Agrícolas/genética , Agricultura , Temperatura Baixa
5.
Ecotoxicol Environ Saf ; 249: 114408, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36516621

RESUMO

The unpredictable climatic perturbations, the expanding industrial and mining sectors, excessive agrochemicals, greater reliance on wastewater usage in cultivation, and landfill leachates, are collectively causing land degradation and affecting cultivation, thereby reducing food production globally. Biochar can generally mitigate the unfavourable effects brought about by climatic perturbations (drought, waterlogging) and degraded soils to sustain crop production. It can also reduce the bioavailability and phytotoxicity of pollutants in contaminated soils via the immobilization of inorganic and/or organic contaminants, commonly through surface complexation, electrostatic attraction, ion exchange, adsorption, and co-precipitation. When biochar is applied to soil, it typically neutralizes soil acidity, enhances cation exchange capacity, water holding capacity, soil aeration, and microbial activity. Thus, biochar has been was widely used as an amendment to ameliorate crop abiotic/biotic stress. This review discusses the effects of biochar addition under certain unfavourable conditions (salinity, drought, flooding and heavy metal stress) to improve plant resilience undergoing these perturbations. Biochar applied with other stimulants like compost, humic acid, phytohormones, microbes and nanoparticles could be synergistic in some situation to enhance plant resilience and survivorship in especially saline, waterlogged and arid conditions. Overall, biochar can provide an effective and low-cost solution, especially in nutrient-poor and highly degraded soils to sustain plant cultivation.


Assuntos
Metais Pesados , Poluentes do Solo , Carvão Vegetal , Agricultura , Solo , Poluentes do Solo/análise
6.
Ecotoxicol Environ Saf ; 268: 115699, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979353

RESUMO

This study investigated the physiological and molecular responses of rice genotype '9311' to Cd stress and the mitigating effects of silicon oxide nanoparticles (SiO NPs). Cd exposure severely hindered plant growth, chlorophyll content, photosynthesis, and Cd accumulation. However, SiO NPs supplementation, particularly the SiONP100 treatment, significantly alleviated Cd-induced toxicity, mitigating the adverse effects on plant growth while maintaining chlorophyll content and photosynthetic attributes. The SiONP100 treatment also reduced Cd accumulation, indicating a preference for Si uptake in genotype 9311. Complex interactions among Cd, Si, Mg, Ca, and K were uncovered, with fluctuations in MDA and H2O2 contents. Distinct morphological changes in stomatal aperture and mesophyll cell structures were observed, including changes in starch granules, grana thylakoids, and osmophilic plastoglobuli. Moreover, following SiONP100 supplementation, genotype 9311 increased peroxidase, superoxide dismutase, and catalase activities by 56%, 44%, and 53% in shoots and 62%, 49%, and 65% in roots, respectively, indicating a robust defense mechanism against Cd stress. Notably, OsNramp5, OsHMA3, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 showed significant expression after SiO NPs treatment, suggesting potential Cd translocation within rice tissues. Overall, SiO NPs supplementation holds promise for enhancing Cd tolerance in rice plants while maintaining essential physiological functions.


Assuntos
Nanopartículas , Oryza , Cádmio/metabolismo , Oryza/metabolismo , Peróxido de Hidrogênio/metabolismo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Clorofila/metabolismo , Raízes de Plantas/metabolismo , Plântula
7.
Ecotoxicol Environ Saf ; 268: 115701, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979354

RESUMO

Cadmium (Cd) stress in crops has been serious concern while little is known about the copper oxide nanoparticles (CuO NPs) effects on Cd accumulation by crops. This study investigated the effectiveness of CuO NPs in mitigating Cd contamination in wheat (Triticum aestivum L.) cultivation through a pot experiment, presenting an eco-friendly solution to a critical agricultural concern. The CuO NPs, synthesized using green methods, exhibited a circular shape with a crystalline structure and a particle size ranging from 8 to 12 nm. The foliar spray of CuO NPs was applied in four different concentrations i.e. control, 25, 50, 75, 100 mg/L. The obtained data demonstrated that, in comparison to the control group, CuO NPs had a beneficial influence on various growth metrics and straw and grain yields of T. aestivum. The green CuO NPs improved T. aestivum growth and physiology under Cd stress, enhanced selected enzyme activities, reduced oxidative stress, and decreased malondialdehyde levels in the T. aestivum plants. CuO NPs lowered Cd contents in T. aestivum tissues and boosted the uptake of essential nutrients from the soil. Overall, foliar applied CuO NPs were effective in minimizing Cd contents in grains thereby reducing the health risks associated with Cd excess in humans. However, more in depth studies with several plant species and application methods of CuO NPs are required for better utilization of NPs in agricultural purposes.


Assuntos
Nanopartículas , Poluentes do Solo , Humanos , Triticum , Cádmio/análise , Cobre/farmacologia , Poluentes do Solo/análise , Nanopartículas/química , Solo/química , Óxidos/farmacologia
8.
Plant Mol Biol ; 105(1-2): 11-41, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32990920

RESUMO

KEY MESSAGE: Plant bioregulators play an important role in managing oxidative stress tolerance in plants. Utilizing their ability in stress sensitive crops through genetic engineering will be a meaningful approach to manage food production under the threat of climate change. Exploitation of the plant defense system against oxidative stress to engineer tolerant plants in the climate change scenario is a sustainable and meaningful strategy. Plant bioregulators (PBRs), which are important biotic factors, are known to play a vital role not only in the development of plants, but also in inducing tolerance in plants against various environmental extremes. These bioregulators include auxins, gibberellins, cytokinins, abscisic acid, brassinosteroids, polyamines, strigolactones, and ascorbic acid and provide protection against the oxidative stress-associated reactive oxygen species through modulation or activation of a plant's antioxidant system. Therefore, exploitation of their functioning and accumulation is of considerable significance for the development of plants more tolerant of harsh environmental conditions in order to tackle the issue of food security under the threat of climate change. Therefore, this review summarizes a new line of evidence that how PBRs act as inducers of oxidative stress resistance in plants and how they could be modulated in transgenic crops via introgression of genes. Reactive oxygen species production during oxidative stress events and their neutralization through an efficient antioxidants system is comprehensively detailed. Further, the use of exogenously applied PBRs in the induction of oxidative stress resistance is discussed. Recent advances in engineering transgenic plants with modified PBR gene expression to exploit the plant defense system against oxidative stress are discussed from an agricultural perspective.


Assuntos
Estresse Oxidativo/fisiologia , Fenômenos Fisiológicos Vegetais , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Brassinosteroides/metabolismo , Mudança Climática , Produtos Agrícolas , Citocininas/metabolismo , Etilenos , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Ácidos Indolacéticos/metabolismo , Oxirredução , Poliaminas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Tocoferóis
9.
Planta ; 254(3): 56, 2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34420086

RESUMO

MAIN CONCLUSION: H2 gas, usually in the form of H2-saturated water, could play a useful role in improving many aspects of plant growth and productivity, including resistance to stress tolerance and improved post-harvest durability. Therefore, molecular hydrogen delivery systems should be considered as a valuable addition within agricultural practice. Agriculture and food security are both impacted by plant stresses, whether that is directly from human impact or through climate change. A continuously increasing human population and rising food consumption means that there is need to search for agriculturally useful and environment friendly strategies to ensure future food security. Molecular hydrogen (H2) research has gained momentum in plant and agricultural science owing to its multifaceted and diverse roles in plants. H2 application can mitigate against a range of stresses, including salinity, heavy metals and drought. Therefore, knowing how endogenous, or exogenously applied, H2 enhances the growth and tolerance against numerous plant stresses will enhance our understanding of how H2 may be useful for future to agriculture and horticulture. In this review, recent progress and future implication of H2 in agriculture is highlighted, focusing on how H2 impacts on plant cell function and how it can be applied for better plant performance. Although the exact molecular action of H2 in plants remains elusive, this safe and easy to apply treatment should have a future in agricultural practice.


Assuntos
Agricultura , Secas , Hidrogênio , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais
10.
Int J Mol Sci ; 21(22)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218014

RESUMO

Various environmental stresses singly or in combination generate excess amounts of reactive oxygen species (ROS), leading to oxidative stress and impaired redox homeostasis. Generation of ROS is the obvious outcome of abiotic stresses and is gaining importance not only for their ubiquitous generation and subsequent damaging effects in plants but also for their diversified roles in signaling cascade, affecting other biomolecules, hormones concerning growth, development, or regulation of stress tolerance. Therefore, a good balance between ROS generation and the antioxidant defense system protects photosynthetic machinery, maintains membrane integrity, and prevents damage to nucleic acids and proteins. Notably, the antioxidant defense system not only scavenges ROS but also regulates the ROS titer for signaling. A glut of studies have been executed over the last few decades to discover the pattern of ROS generation and ROS scavenging. Reports suggested a sharp threshold level of ROS for being beneficial or toxic, depending on the plant species, their growth stages, types of abiotic stresses, stress intensity, and duration. Approaches towards enhancing the antioxidant defense in plants is one of the vital areas of research for plant biologists. Therefore, in this review, we accumulated and discussed the physicochemical basis of ROS production, cellular compartment-specific ROS generation pathways, and their possible distressing effects. Moreover, the function of the antioxidant defense system for detoxification and homeostasis of ROS for maximizing defense is also discussed in light of the latest research endeavors and experimental evidence.


Assuntos
Regulação da Expressão Gênica de Plantas , Estresse Oxidativo , Fotossíntese , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais
11.
Planta ; 251(1): 3, 2019 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-31776765

RESUMO

MAIN CONCLUSION: Plant osmoprotectants protect against abiotic stresses. Introgression of osmoprotectant genes into crop plants via genetic engineering is an important strategy in developing more productive plants. Plants employ adaptive mechanisms to survive various abiotic stresses. One mechanism, the osmoprotection system, utilizes various groups of low molecular weight compounds, collectively known as osmoprotectants, to mitigate the negative effect of abiotic stresses. Osmoprotectants may include amino acids, polyamines, quaternary ammonium compounds and sugars. These nontoxic compounds stabilize cellular structures and enzymes, act as metabolic signals, and scavenge reactive oxygen species produced under stressful conditions. The advent of recent drastic fluctuations in the global climate necessitates the development of plants better adapted to abiotic stresses. The introgression of genes related to osmoprotectant biosynthesis from one plant to another by genetic engineering is a unique strategy bypassing laborious conventional and classical breeding programs. Herein, we review recent literature related to osmoprotectants and transgenic plants engineered with specific osmoprotectant properties.


Assuntos
Plantas Geneticamente Modificadas/metabolismo , Betaína/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico/genética , Estresse Fisiológico/fisiologia
13.
Heliyon ; 10(11): e32569, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38961974

RESUMO

Sword lily is regarded as a useful and commercially demanding cut flower crop; hence, assessing its responses to abiotic stress, particularly salt stress, is vital. Melatonin (MT) exhibits stress tolerance in crop plants and is an emerging stress relieving alternative to chemicals. Nevertheless, the possible process underlying the effects of MT under salt stress has yet to be fully elucidated in plants. Herein, the salt stress (SS) mitigation potential of MT was assessed in a commercially important cut flower, sword lily. Melatonin, expressed as MT1, MT2, MT3, and MT4, was administered at concentrations of 0.2, 0.4, 0.6, and 0.8 mM. The results revealed that SS (5 dS m-1) restricted the growth and physiological aspects of sword lily. Furthermore, malondialdehyde (MDA), hydrogen peroxide (H2O2), membrane permeability, endogenous proline, and soluble protein contents were enhanced in SS. MT application improved morphological traits, photosynthetic pigments, and corm traits. The application of MT mitigated the effects of SS stress in Gladiolus grandiflorus plants by improving growth and photosynthetic pigments. MT application under SS improved the reducing and non-reducing sugar and NPK contents of the sword lily. Furthermore, MT improved the levels of secondary metabolites, such as anthocyanins, flavonoids, and ascorbic acid, in sword lily. Moreover, MT supplementation ameliorated salt-induced oxidative stress in the gladiolus, as depicted by a decrease in stress markers (EL, MDA, and H2O2) and an increase in defense-related enzymes (POD, CAT, and SOD) with highest increase in the MT3 treatment under salinity stress. The SOD and CAT enzyme activities were 3-3.6-fold higher in the MT3 under stress than the control. In conclusion, MT applications on cut flowers can be an effective strategy to reduce salt stress and can be used to regulate salinity stress in cut flower production. MT can be used as a safe alternative to other agrochemicals to maintain the growth and flower quality of sword lilies, with beneficial effects during vase life.

14.
Chemosphere ; 359: 142368, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763397

RESUMO

Biochar is a carbon-rich material produced from the partial combustion of different biomass residues. It can be used as a promising material for adsorbing pollutants from soil and water and promoting environmental sustainability. Extensive research has been conducted on biochars prepared from different feedstocks used for pollutant removal. However, a comprehensive review of biochar derived from non-woody feedstocks (NWF) and its physiochemical attributes, adsorption capacities, and performance in removing heavy metals, antibiotics, and organic pollutants from water systems needs to be included. This review revealed that the biochars derived from NWF and their adsorption efficiency varied greatly according to pyrolysis temperatures. However, biochars (NWF) pyrolyzed at higher temperatures (400-800 °C) manifested excellent physiochemical and structural attributes as well as significant removal effectiveness against antibiotics, heavy metals, and organic compounds from contaminated water. This review further highlighted why biochars prepared from NWF are most valuable/beneficial for water treatment. What preparatory conditions (pyrolysis temperature, residence time, heating rate, and gas flow rate) are necessary to design a desirable biochar containing superior physiochemical and structural properties, and adsorption efficiency for aquatic pollutants? The findings of this review will provide new research directions in the field of water decontamination through the application of NWF-derived adsorbents.


Assuntos
Carvão Vegetal , Metais Pesados , Poluentes Químicos da Água , Purificação da Água , Carvão Vegetal/química , Poluentes Químicos da Água/química , Adsorção , Metais Pesados/química , Purificação da Água/métodos
15.
Plant Signal Behav ; 19(1): 2331357, 2024 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38564424

RESUMO

Ornamental crops particularly cut flowers are considered sensitive to heavy metals (HMs) induced oxidative stress condition. Melatonin (MLT) is a versatile phytohormone with the ability to mitigate abiotic stresses induced oxidative stress in plants. Similarly, signaling molecules such as hydrogen sulfide (H2S) have emerged as potential options for resolving HMs related problems in plants. The mechanisms underlying the combined application of MLT and H2S are not yet explored. Therefore, we evaluated the ability of individual and combined applications of MLT (100 µM) and H2S in the form of sodium hydrosulfide (NaHS), a donor of H2S, (1.5 mM) to alleviate cadmium (Cd) stress (50 mg L-1) in stock (Matthiola incana L.) plants by measuring various morpho-physiological and biochemical characteristics. The results depicted that Cd-stress inhibited growth, photosynthesis and induced Cd-associated oxidative stress as depicted by excessive ROS accumulation. Combined application of MLT and H2S efficiently recovered all these attributes. Furthermore, Cd stress-induced oxidative stress markers including electrolyte leakage, malondialdehyde, and hydrogen peroxide are partially reversed in Cd-stressed plants by MLT and H2S application. This might be attributed to MLT or H2S induced antioxidant plant defense activities, which effectively reduce the severity of oxidative stress indicators. Overall, MLT and H2S supplementation, favorably regulated Cd tolerance in stock; yet, the combined use had a greater effect on Cd tolerance than the independent application.


Assuntos
Brassicaceae , Sulfeto de Hidrogênio , Melatonina , Sulfetos , Sulfeto de Hidrogênio/farmacologia , Cádmio/toxicidade , Melatonina/farmacologia , Estresse Oxidativo , Antioxidantes/metabolismo , Brassicaceae/metabolismo , Peróxido de Hidrogênio
16.
Plant Physiol Biochem ; 211: 108699, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38749375

RESUMO

Climate change is currently considered as one of the main concerns of the agriculture sector, as it limits crop production and quality. Furthermore, the current context of global crisis with international political instability and war conflicts over the world is pushing the agriculture sector even more to urgently boost productivity and yield and doing so in a sustainable way in the current frame of climate change. Biostimulants can be an effective tool in alleviating the negative effects of environmental stresses to which plants are exposed, such as drought, salinity, heavy metals and extreme temperatures etc. Biostimulants act through multiple mechanisms, modifying gene expression, metabolism and phytohormone production, promoting the accumulation of compatible solutes and antioxidants and mitigating oxidative stress. However, it is important to keep in mind that the use and effect of biostimulants has limitations and must be accompanied by other techniques to ensure crop yield and quality in the current frame of climate change, such as proper crop management and the use of other sustainable resources. Here, we will not only highlight the potential use of biostimulants to face future agricultural challenges, but also take a critical look at their limitations, underlining the importance of a broad vision of sustainable agriculture in the context of climate change.


Assuntos
Agricultura , Mudança Climática , Produtos Agrícolas , Agricultura/métodos , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo
17.
Environ Sci Pollut Res Int ; 31(23): 34200-34213, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702484

RESUMO

Arsenic (As) pollution in cultivated soils poses a significant risk to the sustainable growth of agriculture and jeopardizes food security. However, the mechanisms underlying how zinc (Zn) regulates the toxic effects induced by As in plants remain poorly understood. Hence, this study aimed to explore the potential of ZnO as an effective and environmentally friendly amendment to alleviate As toxicity in rice, thereby addressing the significant risk posed by As pollution in cultivated soils. Through a hydroponic experiment, the study assessed the mitigating effects of different ZnO dosages (Zn5, 5 mg L-1; Zn15, 15 mg L-1; Zn30, 30 mg L-1) on rice seedlings exposed to varying levels of As stress (As0, 0 µM L-1; As25, 25 µM L-1). The findings of the study demonstrate significant improvements in plant height and biomass (shoot and root), with a notable increase of 16-40% observed in the Zn15 treatment, and an even more substantial enhancement of 29-53% observed in the Zn30 treatment under As stress, compared to respective control treatment. Furthermore, in the Zn30 treatment, the shoot and root As contents substantially reduced by 47% and 63%, respectively, relative to the control treatment. The elevated Zn contents in shoots and roots enhanced antioxidant enzyme activities (POD, SOD, and CAT), and decreased MDA contents (13-25%) and H2O2 contents (11-27%), indicating the mitigation of oxidative stress. Moreover, the expression of antioxidant-related genes, OsSOD-Cu/Zn, OsCATA, OsCATB, and OsAPX1 was reduced when rice seedlings were exposed to As stress and significantly enhanced after Zn addition. Overall, the research suggests that ZnO application could effectively mitigate As uptake and toxicity in rice plants cultivated in As-contaminated soils, offering potential solutions for sustainable agriculture and food security.


Assuntos
Arsênio , Oryza , Estresse Oxidativo , Poluentes do Solo , Óxido de Zinco , Oryza/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Poluentes do Solo/toxicidade , Solo/química , Antioxidantes/metabolismo
18.
Food Res Int ; 178: 113910, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309862

RESUMO

Hairy root culture is one of the promising biotechnological tools to obtain the stable and sustainable production of specialized metabolites from plants under controlled environment conditions. Various strategies have been adopted to enhance the accumulation of bioactive compounds in hairy roots yet their utilization at the commercial scale is restricted to only a few products. Recently, nanotechnology has been emerged as an active technique that has revolutionized the many sectors in an advantageous way. Elicitation using nanoparticles has been recognized as an effective strategy for enhancing the bioactive compounds of interest in plants. Nanoparticles elicit the activity of defense-related compounds through activation of the specific transcription factors involved in specialized metabolites production. This review discusses the recent progress in using nanoparticles to enhance specialized metabolite biosynthesis using hairy root culture system and the significant achievements in this area of research. Biotic and abiotic elicitors to improve the production of bioactive compounds in hairy roots, different types of nanoparticles as eliciting agents, their properties as dependent on shape, most widely used nanoparticles in plant hairy root systems are described in detail. Further challenges involved in application of nanoparticles, their toxicity in plant cells and risks associated to human health are also envisaged. No doubt, nanoparticle elicitation is a remarkable approach to obtain phytochemicals from hairy roots to be utilized in various sectors including food, medicines, cosmetics or agriculture but it is quite essential to understand the inter-relationships between the nanoparticles and the plant systems in terms of specifics such as type, dosage and time of exposure as well as other important parameters.


Assuntos
Biotecnologia , Nanopartículas , Humanos , Plantas , Raízes de Plantas/metabolismo
19.
Plant Physiol Biochem ; 211: 108659, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691875

RESUMO

Chromium (Cr) contamination in agricultural soils poses a risk to crop productivity and quality. Emerging nano-enabled strategies show great promise in remediating soils contaminated with heavy metals and enhancing crop production. The present study was aimed to investigate the efficacy of nano silicon (nSi) in promoting wheat growth and mitigating adverse effects of Cr-induced toxicity. Wheat seedlings exposed to Cr (K2Cr2O7) at a concentration of 100 mg kg-1 showed significant reductions in plant height (29.56%), fresh weight (35.60%), and dry weight (38.92%) along with enhanced Cr accumulation in roots and shoots as compared to the control plants. However, the application of nSi at a concentration of 150 mg kg-1 showcased substantial mitigation of Cr toxicity, leading to a decrease in Cr accumulation by 27.30% in roots and 35.46% in shoots of wheat seedlings. Moreover, nSi exhibited the capability to scavenge oxidative stressors, such as hydrogen peroxide (H2O2), and malondialdehyde (MDA) and electrolyte leakage, while significantly enhancing gas exchange parameters, total chlorophyll content, and antioxidant activities (enzymatic and nonenzymatic) in plants grown in Cr-contaminated soil. This study further found that the reduced Cr uptake by nSi application was due to downregulating the expression of HMs transporter genes (TaHMA2 and TaHMA3), alongwith upregulating the expression of antioxidant-responsive genes (TaSOD and TaSOD). The findings of this investigation highlight the remarkable potential of nSi in ameliorating Cr toxicity. This enhanced efficacy could be ascribed to the distinctive size and structure of nSi, which augment its ability to counteract Cr stress. Thus, the application of nSi could serve as a viable solution for production of crops in metal contaminated soils, offering an effective alternative to time-consuming and costly remediation techniques.


Assuntos
Cromo , Silício , Triticum , Triticum/efeitos dos fármacos , Triticum/metabolismo , Triticum/crescimento & desenvolvimento , Silício/farmacologia , Cromo/toxicidade , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo
20.
Front Microbiol ; 14: 1184297, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37383639

RESUMO

Lemons (Citrus limon L.) are one of the most economically important and consumed fruit worldwide. The species is vulnerable to several postharvest decay pathogens, of which Penicillium italicum associated with blue mold disease is the most damaging. This study investigates the use of integrated management for blue mold of lemon using lipopeptides (LPs) extracted from endophytic Bacillus strains and resistance inducers. Two resistance inducers; salicylic acid (SA) and benzoic acid (BA) were tested at 2, 3, 4, and 5 mM concentrations against the development of blue mold on lemon fruit. The 5 mM SA treatment produced the lowest disease incidence (60%) and lesion diameter (1.4 cm) of blue mold on lemon fruit relative to the control. In an in vitro antagonism assay eighteen Bacillus strains were evaluated for their direct antifungal effect against P. italicum; CHGP13 and CHGP17 had the greatest inhibition zones of 2.30 and 2.14 cm. Lipopeptides (LPs) extracted from CHGP13 and CHGP17 also inhibited the colony growth of P. italicum. LPs extracted from CHGP13 and 5 mM SA were tested as single and combined treatments against disease incidence and lesion diameter of blue mold on lemon fruit. SA + CHGP13 + PI had the lowest disease incidence (30%) and lesion diameter (0.4 cm) of P. italicum on lemon fruit relative to the other treatments. Furthermore, the lemon fruit treated with SA + CHGP13 + PI had the highest PPO, POD, and PAL activities. The postharvest quality analysis of the lemon fruit including fruit firmness, total soluble solids, weight loss, titratable acidity, and ascorbic acid content revealed that the treatment SA + CHGP13 + PI had little effect on fruit quality compared to the healthy control. These findings indicate that Bacillus strains and resistance inducers can be used as components of integrated disease management for the blue mold of lemon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA