Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Data ; 10(1): 147, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36941275

RESUMO

Building stock management is becoming a global societal and political issue, inter alia because of growing sustainability concerns. Comprehensive and openly accessible building stock data can enable impactful research exploring the most effective policy options. In Europe, efforts from citizen and governments generated numerous relevant datasets but these are fragmented and heterogeneous, thus hindering their usability. Here, we present EUBUCCO v0.1, a database of individual building footprints for ~202 million buildings across the 27 European Union countries and Switzerland. Three main attributes - building height, construction year and type - are included for respectively 73%, 24% and 46% of the buildings. We identify, collect and harmonize 50 open government datasets and OpenStreetMap, and perform extensive validation analyses to assess the quality, consistency and completeness of the data in every country. EUBUCCO v0.1 provides the basis for high-resolution urban sustainability studies across scales - continental, comparative or local studies - using a centralized source and is relevant for a variety of use cases, e.g., for energy system analysis or natural hazard risk assessments.

2.
PLoS One ; 15(12): e0242010, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33296369

RESUMO

Understanding cities as complex systems, sustainable urban planning depends on reliable high-resolution data, for example of the building stock to upscale region-wide retrofit policies. For some cities and regions, these data exist in detailed 3D models based on real-world measurements. However, they are still expensive to build and maintain, a significant challenge, especially for small and medium-sized cities that are home to the majority of the European population. New methods are needed to estimate relevant building stock characteristics reliably and cost-effectively. Here, we present a machine learning based method for predicting building heights, which is based only on open-access geospatial data on urban form, such as building footprints and street networks. The method allows to predict building heights for regions where no dedicated 3D models exist currently. We train our model using building data from four European countries (France, Italy, the Netherlands, and Germany) and find that the morphology of the urban fabric surrounding a given building is highly predictive of the height of the building. A test on the German state of Brandenburg shows that our model predicts building heights with an average error well below the typical floor height (about 2.5 m), without having access to training data from Germany. Furthermore, we show that even a small amount of local height data obtained by citizens substantially improves the prediction accuracy. Our results illustrate the possibility of predicting missing data on urban infrastructure; they also underline the value of open government data and volunteered geographic information for scientific applications, such as contextual but scalable strategies to mitigate climate change.


Assuntos
Planejamento de Cidades/métodos , Aprendizado de Máquina , Cidades/economia , Planejamento de Cidades/economia , Planejamento de Cidades/tendências , Europa (Continente) , Previsões/métodos , Desenvolvimento Sustentável/economia , Desenvolvimento Sustentável/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA