Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Cell ; 143(1): 46-58, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20887892

RESUMO

While the long noncoding RNAs (ncRNAs) constitute a large portion of the mammalian transcriptome, their biological functions has remained elusive. A few long ncRNAs that have been studied in any detail silence gene expression in processes such as X-inactivation and imprinting. We used a GENCODE annotation of the human genome to characterize over a thousand long ncRNAs that are expressed in multiple cell lines. Unexpectedly, we found an enhancer-like function for a set of these long ncRNAs in human cell lines. Depletion of a number of ncRNAs led to decreased expression of their neighboring protein-coding genes, including the master regulator of hematopoiesis, SCL (also called TAL1), Snai1 and Snai2. Using heterologous transcription assays we demonstrated a requirement for the ncRNAs in activation of gene expression. These results reveal an unanticipated role for a class of long ncRNAs in activation of critical regulators of development and differentiation.


Assuntos
Elementos Facilitadores Genéticos , Genoma Humano , RNA não Traduzido/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Humanos , RNA Mensageiro/genética , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética , Ativação Transcricional
2.
Brain ; 145(6): 2018-2030, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35552381

RESUMO

Narcolepsy with cataplexy or narcolepsy type 1 is a disabling chronic sleep disorder resulting from the destruction of orexinergic neurons in the hypothalamus. The tight association of narcolepsy with HLA-DQB1*06:02 strongly suggest an autoimmune origin to this disease. Furthermore, converging epidemiological studies have identified an increased incidence for narcolepsy in Europe following Pandemrix® vaccination against the 2009-2010 pandemic 'influenza' virus strain. The potential immunological link between the Pandemrix® vaccination and narcolepsy remains, however, unknown. Deciphering these mechanisms may reveal pathways potentially at play in most cases of narcolepsy. Here, we developed a mouse model allowing to track and study the T-cell response against 'influenza' virus haemagglutinin, which was selectively expressed in the orexinergic neurons as a new self-antigen. Pandemrix® vaccination in this mouse model resulted in hypothalamic inflammation and selective destruction of orexin-producing neurons. Further investigations on the relative contribution of T-cell subsets in this process revealed that haemagglutinin-specific CD4 T cells were necessary for the development of hypothalamic inflammation, but insufficient for killing orexinergic neurons. Conversely, haemagglutinin-specific CD8 T cells could not initiate inflammation but were the effectors of the destruction of orexinergic neurons. Additional studies revealed pathways potentially involved in the disease process. Notably, the interferon-γ pathway was proven essential, as interferon-γ-deficient CD8 T cells were unable to elicit the loss of orexinergic neurons. Our work demonstrates that an immunopathological process mimicking narcolepsy can be elicited by immune cross-reactivity between a vaccine antigen and a neuronal self-antigen. This process relies on a synergy between autoreactive CD4 and CD8 T cells for disease development. This work furthers our understanding of the mechanisms and pathways potentially involved in the development of a neurological side effect due to a vaccine and, likely, to narcolepsy in general.


Assuntos
Autoimunidade , Vacinas contra Influenza , Narcolepsia , Animais , Autoantígenos , Hemaglutininas , Inflamação/complicações , Vacinas contra Influenza/efeitos adversos , Interferon gama , Camundongos , Narcolepsia/induzido quimicamente , Neurônios , Orexinas , Linfócitos T/imunologia , Vacinação/efeitos adversos
3.
BMC Bioinformatics ; 23(1): 495, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36401177

RESUMO

BACKGROUND: Sequencing is the key method to study the impact of short RNAs, which include micro RNAs, tRNA-derived RNAs, and piwi-interacting RNA, among others. The first step to make use of these reads is to map them to a genome. Existing mapping tools have been developed for long RNAs in mind, and, so far, no tool has been conceived for short RNAs. However, short RNAs have several distinctive features which make them different from messenger RNAs: they are shorter, they are often redundant, they can be produced by duplicated loci, and they may be edited at their ends. RESULTS: In this work, we present a new tool, srnaMapper, that exhaustively maps these reads with all these features in mind, and is most efficient when applied to reads no longer than 50 base pairs. We show, on several datasets, that srnaMapper is very efficient considering computation time and edition error handling: it retrieves all the hits, with arbitrary number of errors, in time comparable with non-exhaustive tools.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , MicroRNAs , Análise de Sequência de RNA/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Interferente Pequeno , RNA de Transferência
4.
BMC Biol ; 17(1): 108, 2019 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-31884969

RESUMO

BACKGROUND: Comparative genomics studies are central in identifying the coding and non-coding elements associated with complex traits, and the functional annotation of genomes is a critical step to decipher the genotype-to-phenotype relationships in livestock animals. As part of the Functional Annotation of Animal Genomes (FAANG) action, the FR-AgENCODE project aimed to create reference functional maps of domesticated animals by profiling the landscape of transcription (RNA-seq), chromatin accessibility (ATAC-seq) and conformation (Hi-C) in species representing ruminants (cattle, goat), monogastrics (pig) and birds (chicken), using three target samples related to metabolism (liver) and immunity (CD4+ and CD8+ T cells). RESULTS: RNA-seq assays considerably extended the available catalog of annotated transcripts and identified differentially expressed genes with unknown function, including new syntenic lncRNAs. ATAC-seq highlighted an enrichment for transcription factor binding sites in differentially accessible regions of the chromatin. Comparative analyses revealed a core set of conserved regulatory regions across species. Topologically associating domains (TADs) and epigenetic A/B compartments annotated from Hi-C data were consistent with RNA-seq and ATAC-seq data. Multi-species comparisons showed that conserved TAD boundaries had stronger insulation properties than species-specific ones and that the genomic distribution of orthologous genes in A/B compartments was significantly conserved across species. CONCLUSIONS: We report the first multi-species and multi-assay genome annotation results obtained by a FAANG project. Beyond the generation of reference annotations and the confirmation of previous findings on model animals, the integrative analysis of data from multiple assays and species sheds a new light on the multi-scale selective pressure shaping genome organization from birds to mammals. Overall, these results emphasize the value of FAANG for research on domesticated animals and reinforces the importance of future meta-analyses of the reference datasets being generated by this community on different species.


Assuntos
Animais Domésticos/genética , Cromatina/genética , Anotação de Sequência Molecular , Transcriptoma , Animais , Bovinos , Galinhas , Cabras , Filogenia , Sus scrofa
5.
Mol Ecol ; 28(6): 1491-1505, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30520198

RESUMO

Hybridization can induce transposons to jump into new genomic positions, which may result in their accumulation across the genome. Alternatively, transposon copy numbers may increase through nonallelic (ectopic) homologous recombination in highly repetitive regions of the genome. The relative contribution of transposition bursts versus recombination-based mechanisms to evolutionary processes remains unclear because studies on transposon dynamics in natural systems are rare. We assessed the genomewide distribution of transposon insertions in a young hybrid lineage ("invasive Cottus", n = 11) and its parental species Cottus rhenanus (n = 17) and Cottus perifretum(n = 9) using a reference genome assembled from long single molecule pacbio reads. An inventory of transposable elements was reconstructed from the same data and annotated. Transposon copy numbers in the hybrid lineage increased in 120 (15.9%) out of 757 transposons studied here. The copy number increased on average by 69% (range: 10%-197%). Given the age of the hybrid lineage, this suggests that they have proliferated within a few hundred generations since admixture began. However, frequency spectra of transposon insertions revealed no increase in novel and rare insertions across assembled parts of the genome. This implies that transposons were added to repetitive regions of the genome that remain difficult to assemble. Future studies will need to evaluate whether recombination-based mechanisms rather than genomewide transposition may explain the majority of the recent transposon proliferation in the hybrid lineage. Irrespectively of the underlying mechanism, the observed overabundance in repetitive parts of the genome suggests that gene-rich regions are unlikely to be directly affected.


Assuntos
Variações do Número de Cópias de DNA/genética , Elementos de DNA Transponíveis/genética , Evolução Molecular , Peixes/genética , Animais , Genoma/genética , Hibridização Genética
6.
Plant Cell ; 28(2): 406-25, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26764378

RESUMO

RNaseIII enzymes catalyze the cleavage of double-stranded RNA (dsRNA) and have diverse functions in RNA maturation. Arabidopsis thaliana RNASE THREE LIKE2 (RTL2), which carries one RNaseIII and two dsRNA binding (DRB) domains, is a unique Arabidopsis RNaseIII enzyme resembling the budding yeast small interfering RNA (siRNA)-producing Dcr1 enzyme. Here, we show that RTL2 modulates the production of a subset of small RNAs and that this activity depends on both its RNaseIII and DRB domains. However, the mode of action of RTL2 differs from that of Dcr1. Whereas Dcr1 directly cleaves dsRNAs into 23-nucleotide siRNAs, RTL2 likely cleaves dsRNAs into longer molecules, which are subsequently processed into small RNAs by the DICER-LIKE enzymes. Depending on the dsRNA considered, RTL2-mediated maturation either improves (RTL2-dependent loci) or reduces (RTL2-sensitive loci) the production of small RNAs. Because the vast majority of RTL2-regulated loci correspond to transposons and intergenic regions producing 24-nucleotide siRNAs that guide DNA methylation, RTL2 depletion modifies DNA methylation in these regions. Nevertheless, 13% of RTL2-regulated loci correspond to protein-coding genes. We show that changes in 24-nucleotide siRNA levels also affect DNA methylation levels at such loci and inversely correlate with mRNA steady state levels, thus implicating RTL2 in the regulation of protein-coding gene expression.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , RNA Interferente Pequeno/genética , Ribonuclease III/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Metilação de DNA , Inativação Gênica , Genes Reporter , Loci Gênicos/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , RNA de Cadeia Dupla/genética , RNA Mensageiro/genética , RNA de Plantas/genética , RNA Interferente Pequeno/metabolismo , Ribonuclease III/genética
7.
Plant Cell ; 28(9): 2197-2211, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27495811

RESUMO

LHP1-INTERACTING FACTOR2 (LIF2), a heterogeneous nuclear ribonucleoprotein involved in Arabidopsis thaliana cell fate and stress responses, interacts with LIKE HETEROCHROMATIN PROTEIN1 (LHP1), a Polycomb Repressive Complex1 subunit. To investigate LIF2-LHP1 functional interplay, we mapped their genome-wide distributions in wild-type, lif2, and lhp1 backgrounds, under standard and stress conditions. Interestingly, LHP1-targeted regions form local clusters, suggesting an underlying functional organization of the plant genome. Regions targeted by both LIF2 and LHP1 were enriched in stress-responsive genes, the H2A.Z histone variant, and antagonistic histone marks. We identified specific motifs within the targeted regions, including a G-box-like motif, a GAGA motif, and a telo-box. LIF2 and LHP1 can operate both antagonistically and synergistically. In response to methyl jasmonate treatment, LIF2 was rapidly recruited to chromatin, where it mediated transcriptional gene activation. Thus, LIF2 and LHP1 participate in transcriptional switches in stress-response pathways.

8.
Nucleic Acids Res ; 45(20): 11891-11907, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981840

RESUMO

RNase III enzymes cleave double stranded (ds)RNA. This is an essential step for regulating the processing of mRNA, rRNA, snoRNA and other small RNAs, including siRNA and miRNA. Arabidopsis thaliana encodes nine RNase III: four DICER-LIKE (DCL) and five RNASE THREE LIKE (RTL). To better understand the molecular functions of RNase III in plants we developed a biochemical assay using RTL1 as a model. We show that RTL1 does not degrade dsRNA randomly, but recognizes specific duplex sequences to direct accurate cleavage. Furthermore, we demonstrate that RNase III and dsRNA binding domains (dsRBD) are both required for dsRNA cleavage. Interestingly, the four DCL and the three RTL that carry dsRBD share a conserved cysteine (C230 in Arabidopsis RTL1) in their dsRBD. C230 is essential for RTL1 and DCL1 activities and is subjected to post-transcriptional modification. Indeed, under oxidizing conditions, glutathionylation of C230 inhibits RTL1 cleavage activity in a reversible manner involving glutaredoxins. We conclude that the redox state of the dsRBD ensures a fine-tune regulation of dsRNA processing by plant RNase III.


Assuntos
Proteínas de Arabidopsis/metabolismo , Cisteína/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA de Plantas/metabolismo , Proteínas Repressoras/metabolismo , Regiões 3' não Traduzidas/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Cisteína/genética , Glutationa/metabolismo , Modelos Moleculares , Conformação de Ácido Nucleico , Oxirredução , Domínios Proteicos , Clivagem do RNA , RNA de Cadeia Dupla/química , RNA de Cadeia Dupla/genética , RNA de Plantas/química , RNA de Plantas/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Motivos de Ligação ao RNA/genética , Proteínas Repressoras/química , Proteínas Repressoras/genética , Ribonuclease III/genética , Ribonuclease III/metabolismo , Homologia de Sequência do Ácido Nucleico
9.
PLoS Biol ; 13(12): e1002326, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26696443

RESUMO

Small RNAs play essential regulatory roles in genome stability, development, and responses to biotic and abiotic stresses in most eukaryotes. In plants, the RNaseIII enzyme DICER-LIKE1 (DCL1) produces miRNAs, whereas DCL2, DCL3, and DCL4 produce various size classes of siRNAs. Plants also encode RNASE THREE-LIKE (RTL) enzymes that lack DCL-specific domains and whose function is largely unknown. We found that virus infection induces RTL1 expression, suggesting that this enzyme could play a role in plant-virus interaction. To first investigate the biochemical activity of RTL1 independent of virus infection, small RNAs were sequenced from transgenic plants constitutively expressing RTL1. These plants lacked almost all DCL2-, DCL3-, and DCL4-dependent small RNAs, indicating that RTL1 is a general suppressor of plant siRNA pathways. In vivo and in vitro assays revealed that RTL1 prevents siRNA production by cleaving dsRNA prior to DCL2-, DCL3-, and DCL4-processing. The substrate of RTL1 cleavage is likely long-perfect (or near-perfect) dsRNA, consistent with the RTL1-insensitivity of miRNAs, which derive from DCL1-processing of short-imperfect dsRNA. Virus infection induces RTL1 mRNA accumulation, but viral proteins that suppress RNA silencing inhibit RTL1 activity, suggesting that RTL1 has evolved as an inducible antiviral defense that could target dsRNA intermediates of viral replication, but that a broad range of viruses counteract RTL1 using the same protein toolbox used to inhibit antiviral RNA silencing. Together, these results reveal yet another level of complexity in the evolutionary battle between viruses and plant defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/virologia , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Vírus de RNA/fisiologia , RNA de Plantas/antagonistas & inibidores , RNA Interferente Pequeno/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Substituição de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Carmovirus/fisiologia , Biologia Computacional/métodos , Cucumovirus/fisiologia , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/virologia , Mutação Puntual , RNA Mensageiro/metabolismo , RNA de Plantas/metabolismo , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Repressoras/genética , Tobamovirus/fisiologia , Tymovirus/fisiologia
10.
BMC Bioinformatics ; 18(1): 411, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28915787

RESUMO

BACKGROUND: RNA-Seq is currently used routinely, and it provides accurate information on gene transcription. However, the method cannot accurately estimate duplicated genes expression. Several strategies have been previously used (drop duplicated genes, distribute uniformly the reads, or estimate expression), but all of them provide biased results. RESULTS: We provide here a tool, called mmquant, for computing gene expression, included duplicated genes. If a read maps at different positions, the tool detects that the corresponding genes are duplicated; it merges the genes and creates a merged gene. The counts of ambiguous reads is then based on the input genes and the merged genes. CONCLUSION: mmquant is a drop-in replacement of the widely used tools htseq-count and featureCounts that handles multi-mapping reads in an unabiased way.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Software , Biologia Computacional , Bases de Dados Genéticas , Análise de Sequência de RNA
11.
Nucleic Acids Res ; 43(17): 8464-75, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26209135

RESUMO

Although post-transcriptional gene silencing (PTGS) has been studied for more than a decade, there is still a gap in our understanding of how de novo silencing is initiated against genetic elements that are not supposed to produce double-stranded (ds)RNA. Given the pervasive transcription occurring throughout eukaryote genomes, we tested the hypothesis that unintended transcription could produce antisense (as)RNA molecules that participate to the initiation of PTGS triggered by sense transgenes (S-PTGS). Our results reveal a higher level of asRNA in Arabidopsis thaliana lines that spontaneously trigger S-PTGS than in lines that do not. However, PTGS triggered by antisense transgenes (AS-PTGS) differs from S-PTGS. In particular, a hypomorphic ago1 mutation that suppresses S-PTGS prevents the degradation of asRNA but not sense RNA during AS-PTGS, suggesting a different treatment of coding and non-coding RNA by AGO1, likely because of AGO1 association to polysomes. Moreover, the intended asRNA produced during AS-PTGS is capped whereas the asRNA produced during S-PTGS derives from 3' maturation of a read-through transcript and is uncapped. Thus, we propose that uncapped asRNA corresponds to the aberrant RNA molecule that is converted to dsRNA by RNA-DEPENDENT RNA POLYMERASE 6 in siRNA-bodies to initiate S-PTGS, whereas capped asRNA must anneal with sense RNA to produce dsRNA that initiate AS-PTGS.


Assuntos
Interferência de RNA , RNA Antissenso/metabolismo , Transgenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Argonautas/genética , Mutação , Estabilidade de RNA , RNA Antissenso/biossíntese , RNA de Cadeia Dupla/metabolismo , RNA Interferente Pequeno/biossíntese , RNA Polimerase Dependente de RNA/metabolismo
12.
Proc Natl Acad Sci U S A ; 110(49): 19842-7, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24248389

RESUMO

Most of our understanding of Drosophila heterochromatin structure and evolution has come from the annotation of heterochromatin from the isogenic y; cn bw sp strain. However, almost nothing is known about the heterochromatin's structural dynamics and evolution. Here, we focus on a 180-kb heterochromatic locus producing Piwi-interacting RNAs (piRNA cluster), the flamenco (flam) locus, known to be responsible for the control of at least three transposable elements (TEs). We report its detailed structure in three different Drosophila lines chosen according to their capacity to repress or not to repress the expression of two retrotransposons named ZAM and Idefix, and we show that they display high structural diversity. Numerous rearrangements due to homologous and nonhomologous recombination, deletions and segmental duplications, and loss and gain of TEs are diverse sources of active genomic variation at this locus. Notably, we evidence a correlation between the presence of ZAM and Idefix in this piRNA cluster and their silencing. They are absent from flam in the strain where they are derepressed. We show that, unexpectedly, more than half of the flam locus results from recent TE insertions and that most of the elements concerned are prone to horizontal transfer between species of the melanogaster subgroup. We build a model showing how such high and constant dynamics of a piRNA master locus open the way to continual emergence of new patterns of piRNA biogenesis leading to changes in the level of transposition control.


Assuntos
Caderinas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Evolução Molecular , Variação Genética , Heterocromatina/genética , RNA Interferente Pequeno/genética , Retroelementos/genética , Animais , Sequência de Bases , Biologia Computacional , Transferência Genética Horizontal/genética , Dados de Sequência Molecular , Oligonucleotídeos/genética , Interferência de RNA , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Bioinformatics ; 30(18): 2656-8, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24894500

RESUMO

MOTIVATION: Recent technological advances are allowing many laboratories to sequence their research organisms. Available de novo assemblers leave repetitive portions of the genome poorly assembled. Some genomes contain high proportions of transposable elements, and transposable elements appear to be a major force behind diversity and adaptation. Few de novo assemblers for transposable elements exist, and most have either been designed for small genomes or 454 reads. RESULTS: In this article, we present a new transposable element de novo assembler, Tedna, which assembles a set of transposable elements directly from the reads. Tedna uses Illumina paired-end reads, the most widely used sequencing technology for de novo assembly, and forms full-length transposable elements. AVAILABILITY AND IMPLEMENTATION: Tedna is available at http://urgi.versailles.inra.fr/Tools/Tedna, under the GPLv3 license. It is written in C++11 and only requires the Sparsehash Package, freely available under the New BSD License. Tedna can be used on standard computers with limited RAM resources, although it may also use large memory for better results. Most of the code is parallelized and thus ready for large infrastructures.


Assuntos
Elementos de DNA Transponíveis/genética , Genômica/métodos , Análise de Sequência de DNA/métodos , Arabidopsis/genética , Sequências Repetitivas de Ácido Nucleico , Triticum/genética
14.
Bioinformatics ; 29(7): 933-9, 2013 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-23413438

RESUMO

MOTIVATION: High-throughput sequencing produces in a small amount of time a large amount of data, which are usually difficult to analyze. Mapping the reads to the transcripts they originate from, to quantify the expression of the genes, is a simple, yet time demanding, example of analysis. Fast genomic comparison algorithms are thus crucial for the analysis of the ever-expanding number of reads sequenced. RESULTS: We used NC-lists to implement an algorithm that compares a set of query intervals with a set of reference intervals in two steps. The first step, a pre-processing done once for all, requires time O[#R log(#R) + #Q log(#Q)], where Q and R are the sets of query and reference intervals. The search phase requires constant space, and time O[#R + #Q + #M), where M is the set of overlaps. We showed that our algorithm compares favorably with five other algorithms, especially when several comparisons are performed. AVAILABILITY: The algorithm has been included to S-MART, a versatile tool box for RNA-Seq analysis, freely available at http://urgi.versailles.inra.fr/Tools/S-Mart. The algorithm can be used for many kinds of data (sequencing reads, annotations, etc.) in many formats (GFF3, BED, SAM, etc.), on any operating system. It is thus readily useable for the analysis of next-generation sequencing data. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Algoritmos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genoma , Genômica , Análise de Sequência de RNA
15.
Methods ; 63(1): 60-5, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23806640

RESUMO

RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli.


Assuntos
Biologia Computacional/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Mensageiro/isolamento & purificação , RNA não Traduzido/isolamento & purificação , Archaea/genética , Bactérias/genética , Sequência de Bases , RNA Mensageiro/genética , RNA não Traduzido/genética
16.
New Phytol ; 199(1): 212-227, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23627500

RESUMO

Plants have evolved efficient defence mechanisms to defend themselves from pathogen attack. Although many studies have focused on the transcriptional regulation of defence responses, less is known about the involvement of microRNAs (miRNAs) as post-transcriptional regulators of gene expression in plant immunity. This work investigates miRNAs that are regulated by elicitors from the blast fungus Magnaporthe oryzae in rice (Oryza sativa). Small RNA libraries were constructed from rice tissues and subjected to high-throughput sequencing for the identification of elicitor-responsive miRNAs. Target gene expression was examined by microarray analysis. Transgenic lines were used for the analysis of miRNA functioning in disease resistance. Elicitor treatment is accompanied by dynamic alterations in the expression of a significant number of miRNAs, including new members of annotated miRNAs. Novel miRNAs from rice are proposed. We report a new rice miRNA, osa-miR7695, which negatively regulates an alternatively spliced transcript of OsNramp6 (Natural resistance-associated macrophage protein 6). This novel miRNA experienced natural and domestication selection events during evolution, and its overexpression in rice confers pathogen resistance. This study highlights an miRNA-mediated regulation of OsNramp6 in disease resistance, whilst illustrating the existence of a novel regulatory network that integrates miRNA function and mRNA processing in plant immunity.


Assuntos
Processamento Alternativo , MicroRNAs/metabolismo , Oryza/genética , Oryza/microbiologia , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , MicroRNAs/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , RNA de Plantas/genética , Reprodutibilidade dos Testes , Especificidade da Espécie , Nicotiana/genética
17.
RNA Biol ; 10(7): 1211-20, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23884177

RESUMO

The non-coding transcriptome of the hyperthermophilic archaeon Pyrococcus abyssi is investigated using the RNA-seq technology. A dedicated computational pipeline analyzes RNA-seq reads and prior genome annotation to identify small RNAs, untranslated regions of mRNAs, and cis-encoded antisense transcripts. Unlike other archaea, such as Sulfolobus and Halobacteriales, P. abyssi produces few leaderless mRNA transcripts. Antisense transcription is widespread (215 transcripts) and targets protein-coding genes that are less conserved than average genes. We identify at least three novel H/ACA-like guide RNAs among the newly characterized non-coding RNAs. Long 5' UTRs in mRNAs of ribosomal proteins and amino-acid biosynthesis genes strongly suggest the presence of cis-regulatory leaders in these mRNAs. We selected a high-interest subset of non-coding RNAs based on their strong promoters, high GC-content, phylogenetic conservation, or abundance. Some of the novel small RNAs and long 5' UTRs display high GC contents, suggesting unknown structural RNA functions. However, we were surprised to observe that most of the high-interest RNAs are AU-rich, which suggests an absence of stable secondary structure in the high-temperature environment of P. abyssi. Yet, these transcripts display other hallmarks of functionality, such as high expression or high conservation, which leads us to consider possible RNA functions that do not require extensive secondary structure.


Assuntos
Temperatura Alta , Pyrococcus abyssi/genética , RNA Arqueal/química , RNA Arqueal/genética , RNA não Traduzido/química , RNA não Traduzido/genética , Composição de Bases , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Conformação de Ácido Nucleico , Filogenia , Regiões Promotoras Genéticas , Transcrição Gênica , Transcriptoma , Regiões não Traduzidas
18.
Nucleic Acids Res ; 39(16): 6886-95, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21624887

RESUMO

We present and validate BlastR, a method for efficiently and accurately searching non-coding RNAs. Our approach relies on the comparison of di-nucleotides using BlosumR, a new log-odd substitution matrix. In order to use BlosumR for comparison, we recoded RNA sequences into protein-like sequences. We then showed that BlosumR can be used along with the BlastP algorithm in order to search non-coding RNA sequences. Using Rfam as a gold standard, we benchmarked this approach and show BlastR to be more sensitive than BlastN. We also show that BlastR is both faster and more sensitive than BlastP used with a single nucleotide log-odd substitution matrix. BlastR, when used in combination with WU-BlastP, is about 5% more accurate than WU-BlastN and about 50 times slower. The approach shown here is equally effective when combined with the NCBI-Blast package. The software is an open source freeware available from www.tcoffee.org/blastr.html.


Assuntos
Bases de Dados de Ácidos Nucleicos , RNA não Traduzido/química , Análise de Sequência de RNA , Algoritmos , Alinhamento de Sequência , Software
19.
Front Immunol ; 14: 1249405, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077397

RESUMO

Background: Narcolepsy Type I (NT1) is a rare, life-long sleep disorder arising as a consequence of the extensive destruction of orexin-producing hypothalamic neurons. The mechanisms involved in the destruction of orexin neurons are not yet elucidated but the association of narcolepsy with environmental triggers and genetic susceptibility (strong association with the HLA, TCRs and other immunologically-relevant loci) implicates an immuno-pathological process. Several studies in animal models and on human samples have suggested that T-cells are the main pathogenic culprits. Methods: RNA sequencing was performed on four CD4 and CD8 T-cell subsets (naive, effector, effector memory and central memory) sorted by flow cytometry from peripheral blood mononuclear cells (PBMCs) of NT1 patients and HLA-matched healthy donors as well as (age- and sex-) matched individuals suffering from other sleep disorders (OSD). The RNAseq analysis was conducted by comparing the transcriptome of NT1 patients to that of healthy donors and other sleep disorder patients (collectively referred to as the non-narcolepsy controls) in order to identify NT1-specific genes and pathways. Results: We determined NT1-specific differentially expressed genes, several of which are involved in tubulin arrangement found in CD4 (TBCB, CCT5, EML4, TPGS1, TPGS2) and CD8 (TTLL7) T cell subsets, which play a role in the immune synapse formation and TCR signaling. Furthermore, we identified genes (GZMB, LTB in CD4 T-cells and NLRP3, TRADD, IL6, CXCR1, FOXO3, FOXP3 in CD8 T-cells) and pathways involved in various aspects of inflammation and inflammatory response. More specifically, the inflammatory profile was identified in the "naive" subset of CD4 and CD8 T-cell. Conclusion: We identified NT1-specific differentially expressed genes, providing a cell-type and subset specific catalog describing their functions in T-cells as well as their potential involvement in NT1. Several genes and pathways identified are involved in the formation of the immune synapse and TCR activation as well as inflammation and the inflammatory response. An inflammatory transcriptomic profile was detected in both "naive" CD4 and CD8 T-cell subsets suggesting their possible involvement in the development or progression of the narcoleptic process.


Assuntos
Leucócitos Mononucleares , Narcolepsia , Animais , Humanos , Orexinas/genética , Orexinas/metabolismo , Leucócitos Mononucleares/metabolismo , Linfócitos T CD8-Positivos , Narcolepsia/genética , Receptores de Antígenos de Linfócitos T/genética , Perfilação da Expressão Gênica , Inflamação
20.
Sci Data ; 10(1): 369, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291142

RESUMO

Inspired by the production of reference data sets in the Genome in a Bottle project, we sequenced one Charolais heifer with different technologies: Illumina paired-end, Oxford Nanopore, Pacific Biosciences (HiFi and CLR), 10X Genomics linked-reads, and Hi-C. In order to generate haplotypic assemblies, we also sequenced both parents with short reads. From these data, we built two haplotyped trio high quality reference genomes and a consensus assembly, using up-to-date software packages. The assemblies obtained using PacBio HiFi reaches a size of 3.2 Gb, which is significantly larger than the 2.7 Gb ARS-UCD1.2 reference. The BUSCO score of the consensus assembly reaches a completeness of 95.8%, among highly conserved mammal genes. We also identified 35,866 structural variants larger than 50 base pairs. This assembly is a contribution to the bovine pangenome for the "Charolais" breed. These datasets will prove to be useful resources enabling the community to gain additional insight on sequencing technologies for applications such as SNP, indel or structural variant calling, and de novo assembly.


Assuntos
Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Animais , Bovinos , Feminino , Benchmarking , Genoma , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA