Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Dent J (Basel) ; 12(6)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38920873

RESUMO

The aim of this study is to validate a minimally invasive surgical procedure to harvest palate periosteum as a source of tissue for mesenchymal stromal/stem cells. We performed a standardized procedure to harvest the palate periosteum in ten subjects, which consisted of a 3 mm disposable punch and a Molt periosteal elevator to harvest a small full-thickness fragment of soft tissue at the hard palate area, between the upper bicuspids, 3 to 4 mm apical to the cement enamel junction. The one-third inner portion was fragmented, and following standard cell culture procedures, the adherent cells were cultured for three passages, after obtaining 70-90% confluence. Cell morphology analysis, flow cytometry analysis, and viability and osteogenic differentiation assays were performed. In all 10 cases, uneventful healing was observed, with no need for analgesic intake. The evaluation of cell morphology showed elongated spindle-shaped cells distributed in woven patterns. A high viability range was verified as well as an immunophenotype compatible with mesenchymal stem cell lineage. The differentiation assay showed the potential of the cells to differentiate into the osteogenic lineage. These results demonstrate that the minimally invasive proposed surgical technique is capable of supplying enough periosteum source tissue for stem cell culture and bone tissue engineering.

2.
Pharmaceutics ; 15(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36840027

RESUMO

In this work, a simple method was proposed to produce dense composite polysaccharide-based membranes to be used for guided tissue and guided bone regeneration. The mucoadhesive polysaccharides chitosan (C) and xanthan gum (X) were used to produce polyelectrolyte-based complex membranes. Hydroxyapatite (HA) was added to the formulation as a potential drug carrier, in C:X:HA mass proportions equal to 1:1:0.4, 1:1:2, and 1:1:10, and also to improve membranes bioactivity and biomimetic properties. FTIR analysis indicated successful incorporation of HA in the membranes and XRD analysis showed that no changes in the HA crystalline structure were observed after incorporation. The residual mass evaluated by TGA was higher for the formulation produced at the proportion 1:1:10. The membranes produced showed asymmetrical surfaces, with distinct roughness. Increasing the HA concentration increased the surface roughness. Greater in vitro proliferation of dental pulp mesenchymal stem cells was observed on the surface of the membrane with 1:1:10 C:X:HA proportion. However, the 1:1:2 formulation showed the most adequate balance of mechanical and biological properties. These results suggest that adding HA to the membranes can influence mechanical parameters as well as cell adhesion and proliferation, supporting the potential application of these materials in regenerative techniques and the treatment of periodontal lesions.

3.
J Funct Biomater ; 14(7)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37504852

RESUMO

Natural polymers are increasingly being used in tissue engineering due to their ability to mimic the extracellular matrix and to act as a scaffold for cell growth, as well as their possible combination with other osteogenic factors, such as mesenchymal stem cells (MSCs) derived from dental pulp, in an attempt to enhance bone regeneration during the healing of a bone defect. Therefore, the aim of this study was to analyze the repair of mandibular defects filled with a new collagen/chitosan scaffold, seeded or not with MSCs derived from dental pulp. Twenty-eight rats were submitted to surgery for creation of a defect in the right mandibular ramus and divided into the following groups: G1 (control group; mandibular defect with clot); G2 (defect filled with dental pulp mesenchymal stem cells-DPSCs); G3 (defect filled with collagen/chitosan scaffold); and G4 (collagen/chitosan scaffold seeded with DPSCs). The analysis of the scaffold microstructure showed a homogenous material with an adequate percentage of porosity. Macroscopic and radiological examination of the defect area after 6 weeks post-surgery revealed the absence of complete repair, as well as absence of signs of infection, which could indicate rejection of the implants. Histomorphometric analysis of the mandibular defect area showed that bone formation occurred in a centripetal fashion, starting from the borders and progressing towards the center of the defect in all groups. Lower bone formation was observed in G1 when compared to the other groups and G2 exhibited greater osteoregenerative capacity, followed by G4 and G3. In conclusion, the scaffold used showed osteoconductivity, no foreign body reaction, malleability and ease of manipulation, but did not obtain promising results for association with DPSCs.

4.
J Biomed Mater Res B Appl Biomater ; 104(5): 979-85, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-25980635

RESUMO

NaNbO3 was synthesized by two different routes, one using metallic niobium powder, and another using niobium oxide (Nb2 O5 ) powder. In both routes an aqueous sodium hydroxide solution was used to hydrothermally treating the powders. In the first approach, the solution concentrations were 3M, 1M, and 0.5M. The second route used solution concentrations of 10M and 12.5M. After the hydrothermal treatments, the powders were heat treated in order to synthesize NaNbO3 . The products were characterized by scanning electron microscopy (SEM) with energy dispersive spectrometry (EDS), and X-ray diffraction (XRD) with Rietveld refinement. The phases were identified by means of X-ray diffraction (XRD) with Rietveld refinement. It was observed that the molar concentrations of the solutions had opposing effects for each route. An antiferroelectric phase was found in both routes. In the niobium metallic route, a ferroelectric phase was also synthesized. This study proves that piezoelectric NaNbO3 can be obtained after alkali treatment of both Nb and Nb2 O5. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 979-985, 2016.


Assuntos
Nióbio/química , Óxidos/química , Compostos de Sódio/química , Compostos de Sódio/síntese química , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA