Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cancer Cell Int ; 20(1): 576, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33327966

RESUMO

BACKGROUND: Glioblastoma (GB) cells have the ability to migrate and infiltrate the normal parenchyma, leading to the formation of recurrent tumors often adjacent to the surgical extraction site. We recently showed that Phoneutria nigriventer spider venom (PnV) has anticancer effects mainly on the migration of human GB cell lines (NG97 and U-251). The present work aimed to investigate the effects of isolated components from the venom on migration, invasiveness, morphology and adhesion of GB cells, also evaluating RhoA-ROCK signaling and Na+/K+-ATPase ß2 (AMOG) involvement. METHODS: Human (NG97) GB cells were treated with twelve subfractions (SFs-obtained by HPLC from PnV). Migration and invasion were evaluated by scratch wound healing and transwell assays, respectively. Cell morphology and actin cytoskeleton were shown by GFAP and phalloidin labeling. The assay with fibronectin coated well plate was made to evaluate cell adhesion. Western blotting demonstrated ROCK and AMOG levels and a ROCK inhibitor was used to verify the involvement of this pathway. Values were analyzed by the GraphPad Prism software package and the level of significance was determinate using one-way analysis of variance (ANOVA) followed by Dunnett's multiple comparisons test. RESULTS: Two (SF1 and SF11) of twelve SFs, decreased migration and invasion compared to untreated control cells. Both SFs also altered actin cytoskeleton, changed cell morphology and reduced adhesion. SF1 and SF11 increased ROCK expression and the inhibition of this protein abolished the effects of both subfractions on migration, morphology and adhesion (but not on invasion). SF11 also increased Na+/K+-ATPase ß2. CONCLUSION: All components of the venom were evaluated and two SFs were able to impair human glioblastoma cells. The RhoA effector, ROCK, was shown to be involved in the mechanisms of both PnV components. It is possible that AMOG mediates the effect of SF11 on the invasion. Further investigations to isolate and biochemically characterize the molecules are underway.

2.
Cells ; 12(7)2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-37048096

RESUMO

Dendritic cells (DCs) vaccine is a potential tool for oncoimmunotherapy. However, it is known that this therapeutic strategy has failed in solid tumors, making the development of immunoadjuvants highly relevant. Recently, we demonstrated that Phoneutria nigriventer spider venom (PnV) components are cytotoxic to glioblastoma (GB) and activate macrophages for an antitumor profile. However, the effects of these molecules on the adaptive immune response have not yet been evaluated. This work aimed to test PnV and its purified fractions in DCs in vitro. For this purpose, bone marrow precursors were collected from male C57BL6 mice, differentiated into DCs and treated with venom or PnV-isolated fractions (F1-molecules < 3 kDa, F2-3 to 10 kDa and F3->10 kDa), with or without costimulation with human GB lysate. The results showed that mainly F1 was able to activate DCs, increasing the activation-dependent surface marker (CD86) and cytokine release (IL-1ß, TNF-α), in addition to inducing a typical morphology of mature DCs. From the F1 purification, a molecule named LW9 was the most effective, and mass spectrometry showed it to be a peptide. The present findings suggest that this molecule could be an immunoadjuvant with possible application in DC vaccines for the treatment of GB.


Assuntos
Glioblastoma , Venenos de Aranha , Camundongos , Masculino , Humanos , Animais , Glioblastoma/terapia , Venenos de Aranha/farmacologia , Camundongos Endogâmicos C57BL , Diferenciação Celular , Células Dendríticas
3.
J Biochem ; 170(1): 51-68, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-33599263

RESUMO

Immunomodulation has been considered an important approach in the treatment of malignant tumours. However, the modulation of innate immune cells remains an underexplored tool. Studies from our group demonstrated that the Phoneutria nigriventer spider venom (PnV) administration increased the infiltration of macrophage in glioblastoma, in addition to decreasing the tumour size in a preclinical model. The hypothesis that PnV would be modulating the innate immune system led us to the main objective of the present study: to elucidate the effects of PnV and its purified fractions on cultured macrophages. Results showed that PnV and the three fractions activated macrophages differentiated from bone marrow precursors. Further purification generated 23 subfractions named low weight (LW-1 to LW-12) and high weight (HW-1 to HW-11). LW-9 presented the best immunomodulatory effect. Treated cells were more phagocytic, migrated more, showed an activated morphological profile and induced an increased cytotoxic effect of macrophages on tumour cells. However, while M1-controls (LPS) increased IL-10, TNF-alpha and IL-6 release, PnV, fractions and subfractions did not alter any cytokine, with the exception of LW-9 that stimulated IL-10 production. These findings suggest that molecules present in LW-9 have the potential to be used as immunoadjuvants in the treatment of cancer.


Assuntos
Adjuvantes Imunológicos/farmacologia , Glioblastoma/terapia , Imunoterapia , Macrófagos/efeitos dos fármacos , Venenos de Aranha/farmacologia , Animais , Células Cultivadas , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA