Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Brief Bioinform ; 24(3)2023 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-37039696

RESUMO

The ability to identify B-cell epitopes is an essential step in vaccine design, immunodiagnostic tests and antibody production. Several computational approaches have been proposed to identify, from an antigen protein or peptide sequence, which residues are more likely to be part of an epitope, but have limited performance on relatively homogeneous data sets and lack interpretability, limiting biological insights that could otherwise be obtained. To address these limitations, we have developed epitope1D, an explainable machine learning method capable of accurately identifying linear B-cell epitopes, leveraging two new descriptors: a graph-based signature representation of protein sequences, based on our well-established Cutoff Scanning Matrix algorithm and Organism Ontology information. Our model achieved Areas Under the ROC curve of up to 0.935 on cross-validation and blind tests, demonstrating robust performance. A comprehensive comparison to alternative methods using distinct benchmark data sets was also employed, with our model outperforming state-of-the-art tools. epitope1D represents not only a significant advance in predictive performance, but also allows biologically meaningful features to be combined and used for model interpretation. epitope1D has been made available as a user-friendly web server interface and application programming interface at https://biosig.lab.uq.edu.au/epitope1d/.


Assuntos
Algoritmos , Epitopos de Linfócito B , Sequência de Aminoácidos , Curva ROC
2.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34676398

RESUMO

The ability to identify antigenic determinants of pathogens, or epitopes, is fundamental to guide rational vaccine development and immunotherapies, which are particularly relevant for rapid pandemic response. A range of computational tools has been developed over the past two decades to assist in epitope prediction; however, they have presented limited performance and generalization, particularly for the identification of conformational B-cell epitopes. Here, we present epitope3D, a novel scalable machine learning method capable of accurately identifying conformational epitopes trained and evaluated on the largest curated epitope data set to date. Our method uses the concept of graph-based signatures to model epitope and non-epitope regions as graphs and extract distance patterns that are used as evidence to train and test predictive models. We show epitope3D outperforms available alternative approaches, achieving Mathew's Correlation Coefficient and F1-scores of 0.55 and 0.57 on cross-validation and 0.45 and 0.36 during independent blind tests, respectively.


Assuntos
Epitopos de Linfócito B , Máquina de Vetores de Suporte , Biologia Computacional/métodos , Aprendizado de Máquina , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA