Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
World J Microbiol Biotechnol ; 33(7): 141, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28593475

RESUMO

Mangroves are located in coastal wetlands and are susceptible to the consequences of oil spills, what may threaten the diversity of microorganisms responsible for the nutrient cycling and the consequent ecosystem functioning. Previous reports show that high concentration of oil favors the incidence of epoxide hydrolases and haloalkane dehalogenases in mangroves. This finding has guided the goals of this study in an attempt to broaden the analysis to other hydrolases and thereby verify whether oil contamination interferes with the prevalence of particular hydrolases and their assigned microorganisms. For this, an in-depth survey of the taxonomic and functional microbial diversity recovered in a fosmid library (Library_Oil Mgv) constructed from oil-impacted Brazilian mangrove sediment was carried out. Fosmid DNA of the whole library was extracted and submitted to Illumina HiSeq sequencing. The resulting Library Oil_Mgv dataset was further compared with those obtained by direct sequencing of environmental DNA from Brazilian mangroves (from distinct regions and affected by distinct sources of contamination), focusing on hydrolases with potential use in biotechnological processes. The most abundant hydrolases found were proteases, esterases and amylases, with similar occurrence profile in all datasets. The main microbial groups harboring such hydrolase-encoding genes were distinct in each mangrove, and in the fosmid library these enzymes were mainly assigned to Chloroflexaceae (for amylases), Planctomycetaceae (for esterases) and Bradyrhizobiaceae (for proteases). Assembly and analysis of Library_Oil Mgv reads revealed three potentially novel enzymes, one epoxide hydrolase, one xylanase and one amylase, to be further investigated via heterologous expression assays.


Assuntos
Bactérias/classificação , Sedimentos Geológicos/microbiologia , Hidrolases/genética , Metagenômica/métodos , Bactérias/enzimologia , Bactérias/genética , Bactérias/isolamento & purificação , Proteínas de Bactérias/genética , Biodiversidade , Brasil , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Poluição por Petróleo/efeitos adversos , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Áreas Alagadas
2.
Braz J Microbiol ; 51(1): 217-228, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31741310

RESUMO

Xylanase and α-amylase enzymes participate in the degradation of organic matter, acting in hemicellulose and starch mineralization, respectively, and are in high demand for industrial use. Mangroves represent a promising source for bioprospecting enzymes due to their unique characteristics, such as fluctuations in oxic/anoxic conditions and salinity. In this context, the present work aimed to bioprospect xylanases from mangrove soil using cultivation-dependent and cultivation-independent methods. Through screening from a metagenomic library, three potentially xylanolytic clones were obtained and sequenced, and reads were assembled into contigs and annotated. The contig MgrBr135 was affiliated with the Planctomycetaceae family and was one of 30 ORFs selected for subcloning that demonstrated only amylase activity. Through the cultivation method, 38 bacterial isolates with xylanolytic activity were isolated. Isolate 11 showed an enzymatic index of 10.9 using the plate assay method. Isolate 39 achieved an enzyme activity of 0.43 U/mL using the colorimetric method with 3,5-dinitrosalicylic acid. Isolate 39 produced xylanase on culture medium with salinity ranging from 1.25 to 5%. Partial 16S rRNA gene sequencing identified isolates in the Bacillus and Paenibacillus genera. The results of this study highlight the importance of mangroves as an enzyme source and show that bacterial groups can be used for starch and hemicellulose degradation.


Assuntos
Bactérias/isolamento & purificação , Endo-1,4-beta-Xilanases/genética , Microbiologia do Solo , Áreas Alagadas , alfa-Amilases/genética , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Proteínas de Bactérias/genética , Celulose/metabolismo , Endo-1,4-beta-Xilanases/metabolismo , Genes Bacterianos/genética , Metagenômica , Paenibacillus/genética , Paenibacillus/isolamento & purificação , Paenibacillus/metabolismo , Planctomycetales/classificação , Planctomycetales/genética , Planctomycetales/isolamento & purificação , Planctomycetales/metabolismo , RNA Ribossômico 16S , Amido/metabolismo , alfa-Amilases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA