Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anesth Analg ; 127(3): 784-791, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29933268

RESUMO

BACKGROUND: Recruitment maneuver and positive end-expiratory pressure (PEEP) can be used to counteract intraoperative anesthesia-induced atelectasis. Variable ventilation can stabilize lung mechanics by avoiding the monotonic tidal volume and protect lung parenchyma as tidal recruitment is encompassed within the tidal volume variability. METHODS: Forty-nine (7 per group) male Wistar rats were anesthetized, paralyzed, and mechanically ventilated. A recruitment maneuver followed by stepwise decremental PEEP titration was performed while continuously estimating respiratory system mechanics using recursive least squares. After a new recruitment, animals were ventilated for 2 hours in volume-control with monotonic (VCV) or variable (VV) tidal volumes. PEEP was adjusted at a level corresponding to the minimum elastance or 2 cm H2O above or below this level. Lungs were harvested for histologic analysis (left lung) and cytokines measurement (right lung). Seven animals were euthanized before the first recruitment as controls. RESULTS: A time-dependent increase in respiratory system elastance was observed and significantly minimized by PEEP (P < .001). Variable ventilation attenuated the amount of concentrations of proinflammatory mediators in lung homogenate: neutrophil cytokine-induced neutrophil chemoattractant 1 (VV = 40 ± 5 and VCV = 57 ± 8 pg/mg; P < .0001) and interleukin-1ß (VV = 59 ± 25 and VCV = 261 ± 113 pg/mg; P < .0001). Variable ventilation was also associated with lower structural lung parenchyma damage. Significant reductions in air fraction at dorsal and caudal lung regions were observed in all ventilated animals (P < .001). CONCLUSIONS: Variable ventilation was more protective than conventional ventilation within the applied PEEP levels.


Assuntos
Anestésicos Dissociativos/administração & dosagem , Pneumonia/metabolismo , Pneumonia/patologia , Respiração com Pressão Positiva/métodos , Mecânica Respiratória/fisiologia , Animais , Pulmão/metabolismo , Pulmão/patologia , Masculino , Pneumonia/etiologia , Respiração com Pressão Positiva/efeitos adversos , Respiração com Pressão Positiva/tendências , Ratos , Ratos Wistar , Respiração Artificial/efeitos adversos , Respiração Artificial/métodos , Respiração Artificial/tendências , Volume de Ventilação Pulmonar/fisiologia
2.
Toxicon ; 191: 18-24, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33359390

RESUMO

Cylindrospermopsin (CYN) is a cyanotoxin of increasing worldwide environmental importance as it can harm human beings. Dexamethasone is a steroidal anti-inflammatory agent. Thus, we aimed at evaluating the pulmonary outcomes of acute CYN intoxication and their putative mitigation by dexamethasone. Male BALB/c mice received intratracheally a single dose of saline or CYN (140 µg/kg). Eighteen hours after exposure, mice instilled with either saline solution (Ctrl) or CYN were intramuscularly treated with saline (Tox) or 2 mg/kg dexamethasone (Tox + dexa) every 6 h for 48 h. Pulmonary mechanics was evaluated 66 h after instillation using the forced oscillation technique (flexiVent) to determine airway resistance (RN), tissue viscance (G) and elastance (H). After euthanasia, the lungs were removed and separated for quantification of CYN, myeloperoxidase activity and IL-6 and IL-17 levels plus histological analysis. CYN was also measured in the liver. CYN increased G and H, alveolar collapse, PMN cells infiltration, elastic and collagen fibers, activated macrophages, peroxidase activity in lung and hepatic tissues, as well as IL-6 and IL-17 levels in the lung. Tox + Dexa mice presented total or partial reversion of the aforementioned alterations. Briefly, CYN impaired pulmonary and hepatic characteristics that were mitigated by dexamethasone.


Assuntos
Alcaloides/toxicidade , Anti-Inflamatórios/uso terapêutico , Dexametasona/uso terapêutico , Animais , Toxinas de Cianobactérias , Fígado , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Testes de Função Respiratória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA