RESUMO
Metal halide perovskite materials are an emerging class of solution-processable semiconductors with considerable potential for use in optoelectronic devices1-3. For example, light-emitting diodes (LEDs) based on these materials could see application in flat-panel displays and solid-state lighting, owing to their potential to be made at low cost via facile solution processing, and could provide tunable colours and narrow emission line widths at high photoluminescence quantum yields4-8. However, the highest reported external quantum efficiencies of green- and red-light-emitting perovskite LEDs are around 14 per cent7,9 and 12 per cent8, respectively-still well behind the performance of organic LEDs10-12 and inorganic quantum dot LEDs13. Here we describe visible-light-emitting perovskite LEDs that surpass the quantum efficiency milestone of 20 per cent. This achievement stems from a new strategy for managing the compositional distribution in the device-an approach that simultaneously provides high luminescence and balanced charge injection. Specifically, we mixed a presynthesized CsPbBr3 perovskite with a MABr additive (where MA is CH3NH3), the differing solubilities of which yield sequential crystallization into a CsPbBr3/MABr quasi-core/shell structure. The MABr shell passivates the nonradiative defects that would otherwise be present in CsPbBr3 crystals, boosting the photoluminescence quantum efficiency, while the MABr capping layer enables balanced charge injection. The resulting 20.3 per cent external quantum efficiency represents a substantial step towards the practical application of perovskite LEDs in lighting and display.
RESUMO
Infrared photodetection enables depth imaging techniques such as structured light and time-of-flight. Traditional photodetectors rely on silicon (Si); however, the bandgap of Si limits photodetection to wavelengths shorter than 1100 nm. Photodetector operation centered at 1370 nm benefits from lower sunlight interference due to atmospheric absorption. Here, we report 1370 nm-operating colloidal quantum dot (CQD) photodetectors and evaluate their outdoor performance. We develop a surface-ligand engineering strategy to tune the electronic properties of each CQD layer and fabricate photodetectors in an inverted (PIN) architecture. The strategy enables photodetectors with an external quantum efficiency of 75% and a low dark current (1 µA/cm2). Outdoor testing demonstrates that CQD-based photodetectors combined with a 10 nm-line width bandpass filter centered at 1370 nm achieve over 2 orders of magnitude (140× at incident intensity 1 µW/cm2) higher signal-to-background ratio than do Si-based photodetectors that use an analogous bandpass filter centered at 905 nm.
RESUMO
Electrochemical reduction of carbon dioxide (CO2) to carbon monoxide (CO) is the first step in the synthesis of more complex carbon-based fuels and feedstocks using renewable electricity. Unfortunately, the reaction suffers from slow kinetics owing to the low local concentration of CO2 surrounding typical CO2 reduction reaction catalysts. Alkali metal cations are known to overcome this limitation through non-covalent interactions with adsorbed reagent species, but the effect is restricted by the solubility of relevant salts. Large applied electrode potentials can also enhance CO2 adsorption, but this comes at the cost of increased hydrogen (H2) evolution. Here we report that nanostructured electrodes produce, at low applied overpotentials, local high electric fields that concentrate electrolyte cations, which in turn leads to a high local concentration of CO2 close to the active CO2 reduction reaction surface. Simulations reveal tenfold higher electric fields associated with metallic nanometre-sized tips compared to quasi-planar electrode regions, and measurements using gold nanoneedles confirm a field-induced reagent concentration that enables the CO2 reduction reaction to proceed with a geometric current density for CO of 22 milliamperes per square centimetre at -0.35 volts (overpotential of 0.24 volts). This performance surpasses by an order of magnitude the performance of the best gold nanorods, nanoparticles and oxide-derived noble metal catalysts. Similarly designed palladium nanoneedle electrocatalysts produce formate with a Faradaic efficiency of more than 90 per cent and an unprecedented geometric current density for formate of 10 milliamperes per square centimetre at -0.2 volts, demonstrating the wider applicability of the field-induced reagent concentration concept.
RESUMO
The electrochemical reduction of CO2 has seen many record-setting advances in C2 productivity in recent years. However, the selectivity for ethanol, a globally significant commodity chemical, is still low compared to the selectivity for products such as ethylene. Here we introduce diverse binding sites to a Cu catalyst, an approach that destabilizes the ethylene reaction intermediates and thereby promotes ethanol production. We develop a bimetallic Ag/Cu catalyst that implements the proposed design toward an improved ethanol catalyst. It achieves a record Faradaic efficiency of 41% toward ethanol at 250 mA/cm2 and -0.67 V vs RHE, leading to a cathodic-side (half-cell) energy efficiency of 24.7%. The new catalysts exhibit an in situ Raman spectrum, in the region associated with CO stretching, that is much broader than that of pure Cu controls, a finding we account for via the diversity of binding configurations. This physical picture, involving multisite binding, accounts for the enhanced ethanol production for bimetallic catalysts, and presents a framework to design multimetallic catalysts to control reaction paths in CO2 reductions toward desired products.
RESUMO
TiO2 has excellent electrochemical properties but limited solar photocatalytic performance in light of its large bandgap. One important class of visible-wavelength sensitizers of TiO2 is based on ZnFe2 O4 , which has shown fully a doubling in performance relative to pure TiO2 . Prior efforts on this important front have relied on presynthesized nanoparticles of ZnFe2 O4 adsorbed on a TiO2 support; however, these have not yet achieved the full potential of this system since they do not provide a consistently maximized area of the charge-separating heterointerface per volume of sensitizing absorber. A novel atomic layer deposition (ALD)-enhanced synthesis of sensitizing ZnFe2 O4 leaves grown on the trunks of TiO2 trees is reported. These new materials exhibit fully a threefold enhancement in photoelectrochemical performance in water splitting compared to pristine TiO2 under visible illumination. The new materials synthesis strategy relies first on the selective growth of FeOOH nanosheets, 2D structures that shoot off from the sides of the TiO2 trees; these templates are then converted to ZnFe2 O4 with the aid of a novel ALD step, a strategy that preserves morphology while adding the Zn cation to achieve enhanced optical absorption and optimize the heterointerface band alignment.
RESUMO
Vanadium redox flow batteries (VRFB) are a promising technology for large-scale storage of electrical energy, combining safety, high capacity, ease of scalability, and prolonged durability; features which have triggered their early commercial implementation. Furthering the deployment of VRFB technologies requires addressing challenges associated to a pivotal component: the membrane. Examples include vanadium crossover, insufficient conductivity, escalated costs, and sustainability concerns related to the widespread adoption of perfluoroalkyl-based membranes, e.g., perfluorosulfonic acid (PFSA). Herein, recent advances in high-performance and sustainable membranes for VRFB, offering insights into prospective research directions to overcome these challenges, are reviewed. The analysis reveals the disparities and trade-offs between performance advances enabled by PFSA membranes and composites, and the lack of sustainability in their final applications. The potential of PFSA-free membranes and present strategies to enhance their performance are discussed. This study delves into vital membrane parameters to enhance battery performance, suggesting protocols and design strategies to achieve high-performance and sustainable VRFB membranes.
RESUMO
Colloidal quantum dots (CQDs) are of interest for optoelectronic applications owing to their tunable properties and ease of processing. Large-diameter CQDs offer optical response in the infrared (IR), beyond the bandgap of c-Si and perovskites. The absorption coefficient of IR CQDs (≈104 cm-1) entails the need for micrometer-thick films to maximize the absorption of IR light. This exceeds the thickness compatible with the efficient extraction of photogenerated carriers, a fact that limits device performance. Here, CQD bulk heterojunction solids are demonstrated that, with extended carrier transport length, enable efficient IR light harvesting. An in-solution doping strategy for large-diameter CQDs is devised that addresses the complex interplay between (100) facets and doping agents, enabling to control CQD doping, energetic configuration, and size homogeneity. The hetero-offset between n-type CQDs and p-type CQDs is manipulated to drive the transfer of electrons and holes into distinct carrier extraction pathways. This enables to form active layers exceeding thicknesses of 700 nm without compromising open-circuit voltage and fill factor. As a result, >90% charge extraction efficiency across the ultraviolet to IR range (350-1400 nm) is documented.
RESUMO
Surface ligands enable control over the dispersibility of colloidal quantum dots (CQDs) via steric and electrostatic stabilization. Today's device-grade CQD inks have consistently relied on highly polar solvents: this enables facile single-step deposition of multi-hundred-nanometer-thick CQD films; but it prevents the realization of CQD film stacks made up of CQDs having different compositions, since polar solvents redisperse underlying films. Here we introduce aromatic ligands to achieve process-orthogonal CQD inks, and enable thereby multifunctional multilayer CQD solids. We explore the effect of the anchoring group of the aromatic ligand on the solubility of CQD inks in weakly-polar solvents, and find that a judicious selection of the anchoring group induces a dipole that provides additional CQD-solvent interactions. This enables colloidal stability without relying on bulky insulating ligands. We showcase the benefit of this ink as the hole transport layer in CQD optoelectronics, achieving an external quantum efficiency of 84% at 1210 nm.
RESUMO
Infrared-absorbing colloidal quantum dots (IR CQDs) are materials of interest in tandem solar cells to augment perovskite and cSi photovoltaics (PV). Today's best IR CQD solar cells rely on the use of passivation strategies based on lead iodide; however, these fail to passivate the entire surface of IR CQDs. Lead chloride passivated CQDs show improved passivation, but worse charge transport. Lead bromide passivated CQDs have higher charge mobilities, but worse passivation. Here a mixed lead-halide (MPbX) ligand exchange is introduced that enables thorough surface passivation without compromising transport. MPbX-PbS CQDs exhibit properties that exceed the best features of single lead-halide PbS CQDs: they show improved passivation (43 ± 5 meV vs 44 ± 4 meV in Stokes shift) together with higher charge transport (4 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 vs 3 × 10-2 ± 3 × 10-3 cm2 V-1 s-1 in mobility). This translates into PV devices having a record IR open-circuit voltage (IR Voc ) of 0.46 ± 0.01 V while simultaneously having an external quantum efficiency of 81 ± 1%. They provide a 1.7× improvement in the power conversion efficiency of IR photons (>1.1 µm) relative to the single lead-halide controls reported herein.
RESUMO
Colloidal quantum dot (CQD) solar cells have risen rapidly in performance; however, their low-cost fabrication under realistic ambient conditions remains elusive. This study uncovers that humid environments curtail the power conversion efficiency (PCE) of solar cells by preventing the needed oxygen doping of the hole transporter during ambient fabrication. A simple oxygen-doping step enabling ambient manufacturing irrespective of seasonal humidity variations is devised. Solar cells with PCE > 10% are printed under high humidity at industrially viable speeds. The devices use a tiny fraction of the ink typically needed and are air stable over a year. The humidity-resilient fabrication of efficient CQD solar cells breaks a long-standing compromise, which should accelerate commercialization.
RESUMO
Photovoltaic (PV) materials such as perovskites and silicon are generally unabsorptive at wavelengths longer than 1100 nm, leaving a significant portion of the IR solar spectrum unharvested. Small-bandgap colloidal quantum dots (CQDs) are a promising platform to offer tandem complementary IR PV solutions. Today, the best performing CQD PVs use zinc oxide (ZnO) as an electron-transport layer. However, these electrodes require ultraviolet (UV)-light activation to overcome the low carrier density of ZnO, precluding the realization of CQD tandem photovoltaics. Here, a new sol-gel UV-free electrode based on Al/Cl hybrid doping of ZnO (CAZO) is developed. Al heterovalent doping provides a strong n-type character while Cl surface passivation leads to a more favorable band alignment for electron extraction. CAZO CQD IR solar cell devices exhibit, at wavelengths beyond the Si bandgap, an external quantum efficiency of 73%, leading to an additional 0.92% IR power conversion efficiency without UV activation. Conventional ZnO devices, on the other hand, add fewer than 0.01 power points at these operating conditions.
RESUMO
Hydrogen generation via photocatalysis-driven water splitting provides a convenient approach to turn solar energy into chemical fuel. The development of photocatalysis system that can effectively harvest visible light for hydrogen generation is an essential task in order to utilize this technology. Herein, a kind of cadmium free Zn-Ag-In-S (ZAIS) colloidal quantum dots (CQDs) that shows remarkably photocatalytic efficiency in the visible region is developed. More importantly, a nanocomposite based on the combination of 0D ZAIS CQDs and 2D MoS2 nanosheet is developed. This can leverage the strong light harvesting capability of CQDs and catalytic performance of MoS2 simultaneously. As a result, an excellent external quantum efficiency of 40.8% at 400 nm is achieved for CQD-based hydrogen generation catalyst. This work presents a new platform for the development of high-efficiency photocatalyst based on 0D-2D nanocomposite.
RESUMO
The energy disorder that arises from colloidal quantum dot (CQD) polydispersity limits the open-circuit voltage (VOC ) and efficiency of CQD photovoltaics. This energy broadening is significantly deteriorated today during CQD ligand exchange and film assembly. Here, a new solution-phase ligand exchange that, via judicious incorporation of reactivity-engineered additives, provides improved monodispersity in final CQD films is reported. It has been found that increasing the concentration of the less reactive species prevents CQD fusion and etching. As a result, CQD solar cells with a VOC of 0.7 V (vs 0.61 V for the control) for CQD films with exciton peak at 1.28 eV and a power conversion efficiency of 10.9% (vs 10.1% for the control) is achieved.
RESUMO
The latest advances in colloidal-quantum-dot material processing are combined with a double-sided junction architecture, which is done by efficiently incorporating indium ions in the ZnO eletrode. This platform allows the collection of all photogenerated carriers even at the maximum power point. The increased depletion width in the device facilitates full carrier collection, leading to a record 10.8% power conversion efficiency.
RESUMO
Colloidal quantum dots have emerged as a material platform for low-cost high-performance optoelectronics. At the heart of optoelectronic devices lies the formation of a junction, which requires the intimate contact of n-type and p-type semiconductors. Doping in bulk semiconductors has been largely deployed for many decades, yet electronically active doping in quantum dots has remained a challenge and the demonstration of robust functional optoelectronic devices had thus far been elusive. Here we report an optoelectronic device, a quantum dot homojunction solar cell, based on heterovalent cation substitution. We used PbS quantum dots as a reference material, which is a p-type semiconductor, and we employed Bi-doping to transform it into an n-type semiconductor. We then combined the two layers into a homojunction device operating as a solar cell robustly under ambient air conditions with power conversion efficiency of 2.7%.