Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Vaccines (Basel) ; 11(2)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851091

RESUMO

With the coexistence of multiple lineages and increased international travel, recombination and gene flow are likely to become increasingly important in the adaptive evolution of SARS-CoV-2. These processes could result in genetic introgression and the incipient parallel evolution of multiple recombinant lineages. However, identifying recombinant lineages is challenging, and the true extent of recombinant evolution in SARS-CoV-2 may be underestimated. This study describes the first SARS-CoV-2 Deltacron recombinant case identified in Brazil. We demonstrate that the recombination breakpoint is at the beginning of the Spike gene. The 5' genome portion (circa 22 kb) resembles the AY.101 (Delta), and the 3' genome portion (circa 8 kb nucleotides) is most similar to the BA.1.1 (Omicron). Furthermore, evolutionary genomic analyses indicate that the new strain emerged after a single recombination event between lineages of diverse geographical locations in December 2021 in South Brazil. This Deltacron, AYBA-RS, is one of the dozens of recombinants described in 2022. The submission of only four sequences in the GISAID database suggests that this lineage had a minor epidemiological impact. However, the recent emergence of this and other Deltacron recombinant lineages (XD, XF, and XS) suggests that gene flow and recombination may play an increasingly important role in the COVID-19 pandemic. We explain the evolutionary and population genetic theory that supports this assertion, concluding that this stresses the need for continued genomic surveillance. This monitoring is vital for countries where multiple variants are present, as well as for countries that receive significant inbound international travel.

2.
Braz J Microbiol ; 53(1): 171-177, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34735710

RESUMO

We investigated the antibacterial activity of the antimicrobial peptides h-Lf1-11, MSI-78, LL-37, fengycin 2B, and magainin-2. The minimum inhibitory concentration (MIC) was determined by microdilution technique according to CLSI (M07-A9, 2012) against Escherichia coli, methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, carbapenem-resistant Klebsiella pneumoniae, and Acinetobacter baumannii. The MSI-78 showed potent bactericidal activity with MIC range of 1.25-40 mg/L against all bacterial strains. The h-Lf1-11, magainin-2, and LL-37 exhibited moderate activity (MIC range of 40-160, 80-160, and 40-160 mg/L, respectively) while the fengycin 2B did not show significant activity against all bacterial strains tested. These results revealed that MSI-78, h-Lf1-11, magainin-2, and LL-37 have great potential as antibacterial agents and their activity deserves to be more explored in further studies for the treatment of antibiotic-resistant bacteria.


Assuntos
Antibacterianos/farmacologia , Peptídeos Antimicrobianos/farmacologia , Bactérias/efeitos dos fármacos , Lipopeptídeos/farmacologia , Magaininas/farmacologia , Antibacterianos/química , Testes de Sensibilidade Microbiana
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA