Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
1.
Nat Immunol ; 17(12): 1424-1435, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27695000

RESUMO

The final stages of restriction to the T cell lineage occur in the thymus after the entry of thymus-seeding progenitors (TSPs). The identity and lineage potential of TSPs remains unclear. Because the first embryonic TSPs enter a non-vascularized thymic rudiment, we were able to directly image and establish the functional and molecular properties of embryonic thymopoiesis-initiating progenitors (T-IPs) before their entry into the thymus and activation of Notch signaling. T-IPs did not include multipotent stem cells or molecular evidence of T cell-restricted progenitors. Instead, single-cell molecular and functional analysis demonstrated that most fetal T-IPs expressed genes of and had the potential to develop into lymphoid as well as myeloid components of the immune system. Moreover, studies of embryos deficient in the transcriptional regulator RBPJ demonstrated that canonical Notch signaling was not involved in pre-thymic restriction to the T cell lineage or the migration of T-IPs.


Assuntos
Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/metabolismo , Células Progenitoras Linfoides/fisiologia , Células Progenitoras Mieloides/fisiologia , Receptores Notch/metabolismo , Linfócitos T/fisiologia , Timo/imunologia , Animais , Diferenciação Celular , Linhagem da Célula , Movimento Celular , Células Cultivadas , Feto , Regulação da Expressão Gênica no Desenvolvimento , Proteína de Ligação a Sequências Sinal de Recombinação J de Imunoglobina/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais
2.
Development ; 151(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37982461

RESUMO

Early organogenesis represents a key step in animal development, during which pluripotent cells diversify to initiate organ formation. Here, we sampled 300,000 single-cell transcriptomes from mouse embryos between E8.5 and E9.5 in 6-h intervals and combined this new dataset with our previous atlas (E6.5-E8.5) to produce a densely sampled timecourse of >400,000 cells from early gastrulation to organogenesis. Computational lineage reconstruction identified complex waves of blood and endothelial development, including a new programme for somite-derived endothelium. We also dissected the E7.5 primitive streak into four adjacent regions, performed scRNA-seq and predicted cell fates computationally. Finally, we defined developmental state/fate relationships by combining orthotopic grafting, microscopic analysis and scRNA-seq to transcriptionally determine cell fates of grafted primitive streak regions after 24 h of in vitro embryo culture. Experimentally determined fate outcomes were in good agreement with computationally predicted fates, demonstrating how classical grafting experiments can be revisited to establish high-resolution cell state/fate relationships. Such interdisciplinary approaches will benefit future studies in developmental biology and guide the in vitro production of cells for organ regeneration and repair.


Assuntos
Gastrulação , Organogênese , Camundongos , Animais , Diferenciação Celular , Organogênese/genética , Linha Primitiva , Endotélio , Embrião de Mamíferos , Mamíferos
3.
Genome Res ; 31(7): 1159-1173, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34088716

RESUMO

Regulatory interactions mediated by transcription factors (TFs) make up complex networks that control cellular behavior. Fully understanding these gene regulatory networks (GRNs) offers greater insight into the consequences of disease-causing perturbations than can be achieved by studying single TF binding events in isolation. Chromosomal translocations of the lysine methyltransferase 2A (KMT2A) gene produce KMT2A fusion proteins such as KMT2A-AFF1 (previously MLL-AF4), causing poor prognosis acute lymphoblastic leukemias (ALLs) that sometimes relapse as acute myeloid leukemias (AMLs). KMT2A-AFF1 drives leukemogenesis through direct binding and inducing the aberrant overexpression of key genes, such as the anti-apoptotic factor BCL2 and the proto-oncogene MYC However, studying direct binding alone does not incorporate possible network-generated regulatory outputs, including the indirect induction of gene repression. To better understand the KMT2A-AFF1-driven regulatory landscape, we integrated ChIP-seq, patient RNA-seq, and CRISPR essentiality screens to generate a model GRN. This GRN identified several key transcription factors such as RUNX1 that regulate target genes downstream of KMT2A-AFF1 using feed-forward loop (FFL) and cascade motifs. A core set of nodes are present in both ALL and AML, and CRISPR screening revealed several factors that help mediate response to the drug venetoclax. Using our GRN, we then identified a KMT2A-AFF1:RUNX1 cascade that represses CASP9, as well as KMT2A-AFF1-driven FFLs that regulate BCL2 and MYC through combinatorial TF activity. This illustrates how our GRN can be used to better connect KMT2A-AFF1 behavior to downstream pathways that contribute to leukemogenesis, and potentially predict shifts in gene expression that mediate drug response.

4.
Nat Immunol ; 13(4): 412-9, 2012 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-22344248

RESUMO

The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.


Assuntos
Linfócitos B/citologia , Linhagem da Célula/imunologia , Células Progenitoras Linfoides/citologia , Células Mieloides/citologia , Células Precursoras de Linfócitos B/citologia , Linfócitos T/citologia , Animais , Separação Celular , Citometria de Fluxo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/imunologia , Células Progenitoras Linfoides/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase em Tempo Real , Timo/citologia
5.
Nature ; 518(7540): 547-51, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-25470051

RESUMO

Most haematopoietic cells renew from adult haematopoietic stem cells (HSCs), however, macrophages in adult tissues can self-maintain independently of HSCs. Progenitors with macrophage potential in vitro have been described in the yolk sac before emergence of HSCs, and fetal macrophages can develop independently of Myb, a transcription factor required for HSC, and can persist in adult tissues. Nevertheless, the origin of adult macrophages and the qualitative and quantitative contributions of HSC and putative non-HSC-derived progenitors are still unclear. Here we show in mice that the vast majority of adult tissue-resident macrophages in liver (Kupffer cells), brain (microglia), epidermis (Langerhans cells) and lung (alveolar macrophages) originate from a Tie2(+) (also known as Tek) cellular pathway generating Csf1r(+) erythro-myeloid progenitors (EMPs) distinct from HSCs. EMPs develop in the yolk sac at embryonic day (E) 8.5, migrate and colonize the nascent fetal liver before E10.5, and give rise to fetal erythrocytes, macrophages, granulocytes and monocytes until at least E16.5. Subsequently, HSC-derived cells replace erythrocytes, granulocytes and monocytes. Kupffer cells, microglia and Langerhans cells are only marginally replaced in one-year-old mice, whereas alveolar macrophages may be progressively replaced in ageing mice. Our fate-mapping experiments identify, in the fetal liver, a sequence of yolk sac EMP-derived and HSC-derived haematopoiesis, and identify yolk sac EMPs as a common origin for tissue macrophages.


Assuntos
Linhagem da Célula , Eritrócitos/citologia , Hematopoese , Macrófagos/citologia , Células-Tronco/citologia , Saco Vitelino/citologia , Animais , Proliferação de Células , Rastreamento de Células , Feminino , Feto/citologia , Granulócitos/citologia , Células de Kupffer/citologia , Células de Langerhans/citologia , Fígado/citologia , Fígado/embriologia , Macrófagos Alveolares/citologia , Masculino , Camundongos , Microglia/citologia , Monócitos/citologia , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Receptor TIE-2/metabolismo , Tirosina Quinase 3 Semelhante a fms/metabolismo
6.
Nucleic Acids Res ; 47(14): 7402-7417, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31127293

RESUMO

The CRISPR system is widely used in genome editing for biomedical research. Here, using either dual paired Cas9D10A nickases or paired Cas9 nuclease we characterize unintended larger deletions at on-target sites that frequently evade common genotyping practices. We found that unintended larger deletions are prevalent at multiple distinct loci on different chromosomes, in cultured cells and mouse embryos alike. We observed a high frequency of microhomologies at larger deletion breakpoint junctions, suggesting the involvement of microhomology-mediated end joining in their generation. In populations of edited cells, the distribution of larger deletion sizes is dependent on proximity to sgRNAs and cannot be predicted by microhomology sequences alone.


Assuntos
Sistemas CRISPR-Cas , Deleção Cromossômica , Cromossomos de Mamíferos/genética , Edição de Genes/métodos , Deleção de Sequência , Animais , Linhagem Celular , Pontos de Quebra do Cromossomo , Cromossomos de Mamíferos/metabolismo , Reparo do DNA por Junção de Extremidades , Desoxirribonuclease I/genética , Desoxirribonuclease I/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Camundongos , Modelos Genéticos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo
7.
IUBMB Life ; 72(1): 45-52, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31634421

RESUMO

Runx1 is an important haematopoietic transcription factor as stressed by its involvement in a number of haematological malignancies. Furthermore, it is a key regulator of the emergence of the first haematopoietic stem cells (HSCs) during development. The transcription factor Gata3 has also been linked to haematological disease and was shown to promote HSC production in the embryo by inducing the secretion of important niche factors. Both proteins are expressed in several different cell types within the aorta-gonads-mesonephros (AGM) region, in which the first HSCs are generated; however, a direct interaction between these two key transcription factors in the context of embryonic HSC production has not formally been demonstrated. In this current study, we have detected co-localisation of Runx1 and Gata3 in rare sub-aortic mesenchymal cells in the AGM. Furthermore, the expression of Runx1 is reduced in Gata3 -/- embryos, which also display a shift in HSC emergence. Using an AGM-derived cell line as a model for the stromal microenvironment in the AGM and performing ChIP-Seq and ChIP-on-chip experiments, we demonstrate that Runx1, together with other key niche factors, is a direct target gene of Gata3. In addition, we can pinpoint Gata3 binding to the Runx1 locus at specific enhancer elements which are active in the microenvironment. These results reveal a direct interaction between Gata3 and Runx1 in the niche that supports embryonic HSCs and highlight a dual role for Runx1 in driving the transdifferentiation of haemogenic endothelial cells into HSCs as well as in the stromal cells that support this process.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário , Endotélio Vascular/citologia , Fator de Transcrição GATA3/metabolismo , Células-Tronco Hematopoéticas/citologia , Animais , Aorta/citologia , Aorta/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Embrião de Mamíferos/metabolismo , Endotélio Vascular/metabolismo , Feminino , Fator de Transcrição GATA3/genética , Gônadas/citologia , Gônadas/metabolismo , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Mesonefro/citologia , Mesonefro/metabolismo , Camundongos , Camundongos Endogâmicos C57BL
8.
Blood ; 131(20): 2223-2234, 2018 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-29555646

RESUMO

Despite the well-established cell-intrinsic role of epigenetic factors in normal and malignant hematopoiesis, their cell-extrinsic role remains largely unexplored. Herein we investigated the hematopoietic impact of inactivating Ezh2, a key component of polycomb repressive complex 2 (PRC2), in the fetal liver (FL) vascular niche. Hematopoietic specific (Vav-iCre) Ezh2 inactivation enhanced FL hematopoietic stem cell (HSC) expansion with normal FL erythropoiesis. In contrast, endothelium (Tie2-Cre) targeted Ezh2 inactivation resulted in embryonic lethality with severe anemia at embryonic day 13.5 despite normal emergence of functional HSCs. Ezh2-deficient FL endothelium overexpressed Mmp9, which cell-extrinsically depleted the membrane-bound form of Kit ligand (mKitL), an essential hematopoietic cytokine, in FL. Furthermore, Mmp9 inhibition in vitro restored mKitL expression along with the erythropoiesis supporting capacity of FL endothelial cells. These data establish that Ezh2 is intrinsically dispensable for FL HSCs and provides proof of principle that modulation of epigenetic regulators in niche components can exert a marked cell-extrinsic impact.


Assuntos
Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Feto , Hematopoese Extramedular , Fígado/fisiologia , Anemia/genética , Anemia/metabolismo , Animais , Biomarcadores , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Imunofluorescência , Expressão Gênica , Inativação Gênica , Hematopoese Extramedular/genética , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Imuno-Histoquímica , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Fenótipo , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Fator de Células-Tronco/metabolismo
9.
EMBO Rep ; 19(10)2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30166337

RESUMO

Few studies report on the in vivo requirement for hematopoietic niche factors in the mammalian embryo. Here, we comprehensively analyze the requirement for Kit ligand (Kitl) in the yolk sac and aorta-gonad-mesonephros (AGM) niche. In-depth analysis of loss-of-function and transgenic reporter mouse models show that Kitl-deficient embryos harbor decreased numbers of yolk sac erythro-myeloid progenitor (EMP) cells, resulting from a proliferation defect following their initial emergence. This EMP defect causes a dramatic decrease in fetal liver erythroid cells prior to the onset of hematopoietic stem cell (HSC)-derived erythropoiesis, and a reduction in tissue-resident macrophages. Pre-HSCs in the AGM require Kitl for survival and maturation, but not proliferation. Although Kitl is expressed widely in all embryonic hematopoietic niches, conditional deletion in endothelial cells recapitulates germline loss-of-function phenotypes in AGM and yolk sac, with phenotypic HSCs but not EMPs remaining dependent on endothelial Kitl upon migration to the fetal liver. In conclusion, our data establish Kitl as a critical regulator in the in vivoAGM and yolk sac endothelial niche.


Assuntos
Desenvolvimento Embrionário/genética , Hematopoese/genética , Células-Tronco Hematopoéticas/citologia , Fator de Células-Tronco/genética , Animais , Aorta/crescimento & desenvolvimento , Linhagem da Célula/genética , Proliferação de Células/genética , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Eritropoese/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Gônadas/crescimento & desenvolvimento , Mesonefro/crescimento & desenvolvimento , Camundongos , Camundongos Transgênicos , Nicho de Células-Tronco/genética , Saco Vitelino/crescimento & desenvolvimento
10.
Blood ; 129(15): 2061-2069, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28179276

RESUMO

The Runx family of transcription factors (Runx1, Runx2, and Runx3) are highly conserved and encode proteins involved in a variety of cell lineages, including blood and blood-related cell lineages, during developmental and adult stages of life. They perform activation and repressive functions in the regulation of gene expression. The requirement for Runx1 in the normal hematopoietic development and its dysregulation through chromosomal translocations and loss-of-function mutations as found in acute myeloid leukemias highlight the importance of this transcription factor in the healthy blood system. Whereas another review will focus on the role of Runx factors in leukemias, this review will provide an overview of the normal regulation and function of Runx factors in hematopoiesis and focus particularly on the biological effects of Runx1 in the generation of hematopoietic stem cells. We will present the current knowledge of the structure and regulatory features directing lineage-specific expression of Runx genes, the models of embryonic and adult hematopoietic development that provide information on their function, and some of the mechanisms by which they affect hematopoietic function.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Regulação Leucêmica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas , Leucemia , Mutação , Proteínas de Neoplasias , Doença Aguda , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo
12.
Dev Biol ; 424(2): 236-245, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-28189604

RESUMO

Hematopoietic stem cells (HSCs) emerge during development via an endothelial-to-hematopoietic transition from hemogenic endothelium of the dorsal aorta (DA). Using in situ hybridization and analysis of a knock-in RedStar reporter, we show that the transcriptional regulator Hhex is expressed in endothelium of the dorsal aorta (DA) and in clusters of putative HSCs as they are specified during murine development. We exploited this observation, using the Hhex locus to define cis regulatory elements, enhancers and interacting transcription factors that are both necessary and sufficient to support gene expression in the emerging HSC. We identify an evolutionarily conserved non-coding region (ECR) in the Hhex locus with the capacity to bind the hematopoietic-affiliated transcriptional regulators Gata2, SCL, Fli1, Pu.1 and Ets1/2. This region is sufficient to drive the expression of a transgenic GFP reporter in the DA endothelium and intra-aortic hematopoietic clusters. GFP-positive AGM cells co-expressed HSC-associated markers c-Kit, CD34, VE-Cadherin, and CD45, and were capable of multipotential differentiation and long term engraftment when transplanted into myelo-ablated recipients. The Hhex ECR was also sufficient to drive expression at additional blood sites including the yolk sac blood islands, fetal liver, vitelline and umbilical arteries and the adult bone marrow, suggesting a common mechanism for Hhex regulation throughout ontogenesis of the blood system. To explore the physiological requirement for the Hhex ECR region during hematoendothelial development, we deleted the ECR element from the endogenous locus in the context of a targeted Hhex-RedStar reporter allele. Results indicate a specific requirement for the ECR in blood-associated Hhex expression during development and further demonstrate a requirement for this region in the adult HSC compartment. Taken together, our results identified the ECR region as an enhancer both necessary and sufficient for gene expression in HSC development and homeostasis. The Hhex ECR thus appears to be a core node for the convergence of the transcription factor network that governs the emergence of HSCs.


Assuntos
Regulação da Expressão Gênica , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Compartimento Celular , Linhagem da Célula/genética , Ensaio de Unidades Formadoras de Colônias , Sequência Conservada/genética , Embrião de Mamíferos/metabolismo , Loci Gênicos , Proteínas de Fluorescência Verde/metabolismo , Células-Tronco Hematopoéticas/citologia , Proteínas de Homeodomínio/genética , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética
13.
Development ; 141(17): 3319-23, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25139854

RESUMO

Haematopoiesis in adult animals is maintained by haematopoietic stem cells (HSCs), which self-renew and can give rise to all blood cell lineages. The AGM region is an important intra-embryonic site of HSC development and a wealth of evidence indicates that HSCs emerge from the endothelium of the embryonic dorsal aorta and extra-embryonic large arteries. This, however, is a stepwise process that occurs through sequential upregulation of CD41 and CD45 followed by emergence of fully functional definitive HSCs. Although largely dispensable at later stages, the Runx1 transcription factor is crucially important during developmental maturation of HSCs; however, exact points of crucial involvement of Runx1 in this multi-step developmental maturation process remain unclear. Here, we have investigated requirements for Runx1 using a conditional reversible knockout strategy. We report that Runx1 deficiency does not preclude formation of VE-cad+CD45-CD41+ cells, which are phenotypically equivalent to precursors of definitive HSCs (pre-HSC Type I) but blocks transition to the subsequent CD45+ stage (pre-HSC Type II). These data emphasise that developmental progression of HSCs during a very short period of time is regulated by precise stage-specific molecular mechanisms.


Assuntos
Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos/citologia , Células-Tronco Hematopoéticas/citologia , Glicoproteína IIb da Membrana de Plaquetas/metabolismo , Animais , Subunidade alfa 2 de Fator de Ligação ao Core/deficiência , Células-Tronco Hematopoéticas/metabolismo , Integrases/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
14.
Development ; 141(20): 4018-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25252941

RESUMO

Transcription factors (TFs) act within wider regulatory networks to control cell identity and fate. Numerous TFs, including Scl (Tal1) and PU.1 (Spi1), are known regulators of developmental and adult haematopoiesis, but how they act within wider TF networks is still poorly understood. Transcription activator-like effectors (TALEs) are a novel class of genetic tool based on the modular DNA-binding domains of Xanthomonas TAL proteins, which enable DNA sequence-specific targeting and the manipulation of endogenous gene expression. Here, we report TALEs engineered to target the PU.1-14kb and Scl+40kb transcriptional enhancers as efficient new tools to perturb the expression of these key haematopoietic TFs. We confirmed the efficiency of these TALEs at the single-cell level using high-throughput RT-qPCR, which also allowed us to assess the consequences of both PU.1 activation and repression on wider TF networks during developmental haematopoiesis. Combined with comprehensive cellular assays, these experiments uncovered novel roles for PU.1 during early haematopoietic specification. Finally, transgenic mouse studies confirmed that the PU.1-14kb element is active at sites of definitive haematopoiesis in vivo and PU.1 is detectable in haemogenic endothelium and early committing blood cells. We therefore establish TALEs as powerful new tools to study the functionality of transcriptional networks that control developmental processes such as early haematopoiesis.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Transativadores/fisiologia , Animais , Diferenciação Celular , Técnicas de Cocultura , Células Endoteliais/citologia , Células-Tronco Hematopoéticas , Humanos , Células K562 , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Célula Única , Fatores de Transcrição/metabolismo , Transgenes , Xanthomonas/metabolismo
15.
Adv Exp Med Biol ; 962: 47-64, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28299650

RESUMO

The de novo generation of hematopoietic stem and progenitor cells (HSPC) occurs solely during embryogenesis from a population of epithelial cells called hemogenic endothelium (HE). During midgestation HE cells in multiple intra- and extraembryonic vascular beds leave the vessel wall as they transition into HSPCs in a process termed the endothelial to hematopoietic transition (EHT). Runx1 expression in HE cells orchestrates the transcriptional switch necessary for the transdifferentiation of endothelial cells into functional HSPCs. Runx1 is widely considered the master regulator of developmental hematopoiesis because it plays an essential function during specification of the hematopoietic lineage during embryogenesis. Here we review the role of Runx1 in embryonic HSPC formation, with a particular focus on its role in hemogenic endothelium.


Assuntos
Células Sanguíneas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Desenvolvimento Embrionário/fisiologia , Hemangioblastos/metabolismo , Animais , Transdiferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/fisiologia , Endotélio Vascular/metabolismo , Hematopoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco/metabolismo
16.
Blood ; 124(16): 2472-3, 2014 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-25323683

RESUMO

In this issue of Blood, Padrón-Barthe et al explore the role of the hemangioblast as the cell of origin for yolk sac blood and endothelium.


Assuntos
Hemangioblastos/citologia , Hematopoese , Camundongos/embriologia , Saco Vitelino/citologia , Animais , Feminino
17.
Blood Cells Mol Dis ; 51(4): 206-12, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24095001

RESUMO

Definitive hematopoietic cells are generated de novo during ontogeny from a specialized subset of endothelium, the so-called hemogenic endothelium. In this review we give a brief overview of the identification of hemogenic endothelium, explore its links with the HSC lineage, and summarize recent insights into the nature of hemogenic endothelium and the microenvironmental and intrinsic regulators contributing to its transition into blood. Ultimately, a better understanding of the processes controlling the transition of endothelium into blood will advance the generation and expansion of hematopoietic stem cells for therapeutic purposes.


Assuntos
Endotélio/fisiologia , Hematopoese/fisiologia , Animais , Linhagem da Célula , Transdiferenciação Celular , Microambiente Celular , Endotélio/embriologia , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/fisiologia , Humanos , Fatores de Transcrição/metabolismo
18.
Blood ; 128(12): 1541-2, 2016 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-27658698
19.
Haematologica ; 98(2): 163-71, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22801971

RESUMO

The first mouse adult-repopulating hematopoietic stem cells emerge in the aorta-gonad-mesonephros region at embryonic day (E) 10.5. Their numbers in this region increase thereafter and begin to decline at E12.5, thus pointing to the possible existence of both positive and negative regulators of emerging hematopoietic stem cells. Our recent expression analysis of the aorta-gonad-mesonephros region showed that the Delta-like homologue 1 (Dlk1) gene is up-regulated in the region of the aorta-gonad-mesonephros where hematopoietic stem cells are preferentially located. To analyze its function, we studied Dlk1 expression in wild-type and hematopoietic stem cell-deficient embryos and determined hematopoietic stem and progenitor cell activity in Dlk1 knockout and overexpressing mice. Its role in hematopoietic support was studied in co-culture experiments using stromal cell lines that express varying levels of Dlk1. We show here that Dlk1 is expressed in the smooth muscle layer of the dorsal aorta and the ventral sub-aortic mesenchyme, where its expression is dependent on the hematopoietic transcription factor Runx1. We further demonstrate that Dlk1 has a negative impact on hematopoietic stem and progenitor cell activity in the aorta-gonad-mesonephros region in vivo, which is recapitulated in co-cultures of hematopoietic stem cells on stromal cells that express varying levels of Dlk1. This negative effect of Dlk1 on hematopoietic stem and progenitor cell activity requires the membrane-bound form of the protein and cannot be recapitulated by soluble Dlk1. Together, these data suggest that Dlk1 expression by cells of the aorta-gonad-mesonephros hematopoietic microenvironment limits hematopoietic stem cell expansion and is, to our knowledge, the first description of such a negative regulator in this tissue.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Animais , Aorta/embriologia , Aorta/metabolismo , Proteínas de Ligação ao Cálcio , Membrana Celular/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Embrião de Mamíferos , Expressão Gênica , Gônadas/embriologia , Gônadas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mesonefro/embriologia , Mesonefro/metabolismo , Camundongos , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Transporte Proteico , Sistema Nervoso Simpático/metabolismo
20.
bioRxiv ; 2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37662317

RESUMO

During embryogenesis, yolk-sac and intra-embryonic-derived hematopoietic progenitors, comprising the precursors of adult hematopoietic stem cells, converge into the fetal liver. With a new staining strategy, we defined all non-hematopoietic components of the fetal liver and found that hepatoblasts are the major producers of hematopoietic growth factors. We identified mesothelial cells, a novel component of the stromal compartment, producing Kit ligand, a major hematopoietic cytokine. A high-definition imaging dataset analyzed using a deep-learning based pipeline allowed the unambiguous identification of hematopoietic and stromal populations, and enabled determining a neighboring network composition, at the single cell resolution. Throughout active hematopoiesis, progenitors preferentially associate with hepatoblasts, but not with stellate or endothelial cells. We found that, unlike yolk sac-derived progenitors, intra-embryonic progenitors respond to a chemokine gradient created by CXCL12-producing stellate cells. These results revealed that FL hematopoiesis is a spatiotemporal dynamic process, defined by an environment characterized by low cytokine concentrations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA