Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Complement Altern Med ; 15(1): 420, 2015 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-26608735

RESUMO

BACKGROUND: The Combretum leprosum Mart. plant, popularly known as mofumbo, is used in folk medicine for inflammation, pain and treatment of wounds. From this species, it is possible to isolate three triterpenes: (3ß, 6ß, 16ß-trihydroxylup-20(29)-ene) called lupane, arjunolic acid and molic acid. In this study, through preclinical tests, the effect of lupane was evaluated on the cytotoxicity and on the ability to activate cellular function by the production of TNF-α, an inflammatory cytokine, and IL-10, an immuno regulatory cytokine was assessed. The effect of lupane on the enzymes topoisomerase I and II was also evaluated. METHODS: For this reason, peripheral blood mononuclear cells (PBMCs) were obtained and cytotoxicity was assessed by the MTT method at three different times (1, 15 and 24 h), and different concentrations of lupane (0.3, 0.7, 1.5, 6, 3 and 12 µg/mL). The cell function was assessed by the production of TNF-α and IL-10 by PBMCs quantified by specific enzyme immunoassay (ELISA). The activity of topoisomerases was assayed by in vitro biological assays and in silico molecular docking. RESULTS: The results obtained showed that lupane at concentrations below 1.5 µg/mL was not toxic to the cells. Moreover, lupane was not able to activate cellular functions and did not alter the production of IL-10 and TNF-α. Furthermore, the data showed that lupane has neither interfered in the action of topoisomerase I nor in the action of topoisomerase II. CONCLUSION: Based on preclinical results obtained in this study, we highlight that the compound studied (lupane) has moderate cytotoxicity, does not induce the production of TNF-α and IL-10, and does not act on human topoisomerases. Based on the results of this study and taking into consideration the reports about the anti-inflammatory and leishmanicidal activity of 3ß, 6ß, 16ß-trihydroxylup-20(29)-ene, we suggest that this compound may serve as a biotechnological tool for the treatment of leishmaniasis in the future.


Assuntos
Anti-Inflamatórios/toxicidade , Combretum , Leucócitos Mononucleares/efeitos dos fármacos , Triterpenos/toxicidade , Anti-Inflamatórios/farmacologia , DNA Topoisomerases/metabolismo , Flores , Humanos , Interleucina-10/biossíntese , Extratos Vegetais/farmacologia , Extratos Vegetais/toxicidade , Triterpenos/farmacologia , Fator de Necrose Tumoral alfa/biossíntese
2.
J Leukoc Biol ; 106(3): 595-605, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31087703

RESUMO

BjcuL is a C-type lectin isolated from Bothrops jararacussu snake venom with specificity for binding ß-d-galactose units. BjcuL is not toxic to human peripheral blood mononuclear cells (PBMCs), but it inhibits PBMC proliferation and stimulates these cells to produce superoxide anions and hydrogen peroxide primarily via lymphocyte stimulation; it does not stimulate the production of nitric oxide and PGE2 . The purpose of this study was to investigate the effect of BjcuL on PBMC activation with a focus on cytokine release modulating PBMC proliferation. The results showed for the first time that BjcuL coupled to FITC interacted with monocytes, B cells, natural killer (NK) cells, and with subpopulations of T cells. These cell-cell interactions can lead to cell activation and inflammatory cytokines release, such as IL-6 and TNF-α, as well as the anti-inflammatory cytokine IL-10. In addition, TNF-α release was attributed to NK cells and monocytes, whereas IL-10 was attributed to TCD4+ and Treg cells when stimulated by BjcuL. The temporal cytokines profile produced by cells when stimulated with this lectin allows us to assert that BjcuL has immunomodulatory activity in this context.


Assuntos
Bothrops/metabolismo , Venenos de Crotalídeos/química , Interleucina-10/metabolismo , Células Matadoras Naturais/metabolismo , Lectinas Tipo C/isolamento & purificação , Monócitos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Animais , Humanos , Leucócitos Mononucleares/metabolismo
3.
Toxicon ; 141: 55-64, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29170054

RESUMO

The present work aimed to isolate a basic phospholipase A2 (PLA2) from Bothrops diporus snake venom (BdV), evaluate and compare the myotoxic and oedema-inducing activities, as well as the systemic effects caused by both the isolated PLA2 and BdV on Swiss mice. A Lys-49 PLA2 (BdipTX-I) was obtained through two chromatographic steps: an ion-exchange and a reverse phase. The local (oedema and myotoxicity) and systemic (hepatic and renal functions) effects were then assessed for BdipTX-I and BdV. Results showed that the oedema-inducing activity was significant in all tested doses (5 and 20 µg/paw) for both BdipTX-I and BdV. Myotoxicity was evaluated by the increase of serum CK, CK-MB and LDH, and results showed that BdV effect is more prominent than BdipTX-I effect. The systemic effects were evaluated by determining specific laboratory markers: AST, ALT, GGT, ALP, urea, creatinine, protein and calcium. BdipTX-I and BdV were able to induce renal changes in the experimental model, leading to proteinuria (induced both by BdipTX-I and by BdV) and uremia (induced only by BdV). Thus, it is concluded that the systemic effects of BdV and BdipTX-I occur differently.


Assuntos
Bothrops , Venenos de Crotalídeos/enzimologia , Rim/efeitos dos fármacos , Fosfolipases A2/toxicidade , Sequência de Aminoácidos , Animais , Edema , Fígado/efeitos dos fármacos , Camundongos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Proteinúria , Uremia
4.
Int J Biol Macromol ; 105(Pt 1): 1117-1125, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28743568

RESUMO

Crotalus Neutralizing Factor (CNF) is an inhibitor of phospholipase A2 (PLA2), present in the blood plasma of Crotalus durissus terrificus snake. This inhibitor neutralizes the lethal and enzymatic activity of crotoxin, the main neurotoxin from this venom. In this study, we investigated the effects of CNF on the functionality of human peripheral blood mononuclear cells (PBMCs) and human neutrophils. The following parameters were evaluated: viability and proliferation, chemotaxis, cytokines and LTB4 production, cytosolic PLA2s activity, myeloperoxidase (MPO) and superoxide anion (O2-) production. CNF showed no toxicity on PBMCs or neutrophils, and acts by stimulating the release of TNF-α and LTB4, but neither stimulates IL-10 and IL-2 nor affects PBMCs proliferation and O2- release. In neutrophils, CNF induces chemotaxis but does not induce the release of both MPO and O2-. However, it induces LTB4 and IL-8 production. These data show the influence of CNF on PBMCs' function by inducing TNF-α and LTB4 production, and on neutrophils, by stimulating chemotaxis and LTB4 production, via cytosolic PLA2 activity, and IL-8 release. The inflammatory profile produced by CNF is shown for the first time. Our present results suggest that CNF has a role in activation of leukocytes and exert proinflammatory effects on these cell.


Assuntos
Crotalus , Leucócitos Mononucleares/efeitos dos fármacos , Neutrófilos/efeitos dos fármacos , Inibidores de Fosfolipase A2/farmacologia , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Quimiotaxia/efeitos dos fármacos , Citocinas/metabolismo , Citosol/enzimologia , Humanos , Interleucina-10/metabolismo , Interleucina-2/metabolismo , Interleucina-8/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Leucotrieno B4/biossíntese , Neutrófilos/citologia , Neutrófilos/metabolismo , Peroxidase/metabolismo , Superóxidos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Toxicol In Vitro ; 41: 30-41, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28188836

RESUMO

BjcuL is a C-type lectin with specificity for the binding of ß-d-galactose units isolated from Bothrops jararacussu venom. It triggers cellular infiltration in post capillary venules, increases edema and vascular permeability in murine models, contributes to in vitro neutrophil activation and modulates macrophage functional activation towards an M1 state. The purpose of this study was to investigate the effect of BjcuL on human peripheral blood mononuclear cells (PBMCs) activation with a focus on PBMCs proliferation and inflammatory mediators release. Results showed that BjcuL is not toxic to PBMCs, that BjcuL inhibits PBMCs proliferation and that it stimulates PBMCs to produce superoxide anion and hydrogen peroxide, primarily via lymphocyte stimulation, but does not stimulate the production of nitric oxide and PGE2. These results demonstrate that BjcuL has an immunomodulatory effect on PBMCs. Further studies are needed to confirm the immunomodulatory effect of BjcuL, to elucidate the molecular mechanisms of action responsible for its effects and to determine its potential application as an immunopharmacological and biotechnological tool.


Assuntos
Venenos de Crotalídeos/toxicidade , Fatores Imunológicos/toxicidade , Leucócitos Mononucleares/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Ciclo-Oxigenase 1/genética , Ciclo-Oxigenase 2/genética , Dinoprostona/metabolismo , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Expressão Gênica/efeitos dos fármacos , Hemaglutininas/metabolismo , Humanos , Lectinas Tipo C , Leucócitos Mononucleares/metabolismo , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA