Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Neurosci ; 39(23): 4422-4433, 2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-30926749

RESUMO

The discovery of a G-protein-coupled receptor for lactate named hydroxycarboxylic acid receptor 1 (HCAR1) in neurons has pointed to additional nonmetabolic effects of lactate for regulating neuronal network activity. In this study, we characterized the intracellular pathways engaged by HCAR1 activation, using mouse primary cortical neurons from wild-type (WT) and HCAR1 knock-out (KO) mice from both sexes. Using whole-cell patch clamp, we found that the activation of HCAR1 with 3-chloro-5-hydroxybenzoic acid (3Cl-HBA) decreased miniature EPSC frequency, increased paired-pulse ratio, decreased firing frequency, and modulated membrane intrinsic properties. Using fast calcium imaging, we show that HCAR1 agonists 3,5-dihydroxybenzoic acid, 3Cl-HBA, and lactate decreased by 40% spontaneous calcium spiking activity of primary cortical neurons from WT but not from HCAR1 KO mice. Notably, in neurons lacking HCAR1, the basal activity was increased compared with WT. HCAR1 mediates its effect in neurons through a Giα-protein. We observed that the adenylyl cyclase-cAMP-protein kinase A axis is involved in HCAR1 downmodulation of neuronal activity. We found that HCAR1 interacts with adenosine A1, GABAB, and α2A-adrenergic receptors, through a mechanism involving both its Giα and Gißγ subunits, resulting in a complex modulation of neuronal network activity. We conclude that HCAR1 activation in neurons causes a downmodulation of neuronal activity through presynaptic mechanisms and by reducing neuronal excitability. HCAR1 activation engages both Giα and Gißγ intracellular pathways to functionally interact with other Gi-coupled receptors for the fine tuning of neuronal activity.SIGNIFICANCE STATEMENT Expression of the lactate receptor hydroxycarboxylic acid receptor 1 (HCAR1) was recently described in neurons. Here, we describe the physiological role of this G-protein-coupled receptor (GPCR) and its activation in neurons, providing information on its expression and mechanism of action. We dissected out the intracellular pathway through which HCAR1 activation tunes down neuronal network activity. For the first time, we provide evidence for the functional cross talk of HCAR1 with other GPCRs, such as GABAB, adenosine A1- and α2A-adrenergic receptors. These results set HCAR1 as a new player for the regulation of neuronal network activity acting in concert with other established receptors. Thus, HCAR1 represents a novel therapeutic target for pathologies characterized by network hyperexcitability dysfunction, such as epilepsy.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP/fisiologia , Lactatos/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Neurônios/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Potenciais de Ação , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , AMP Cíclico/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/fisiologia , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Receptores Acoplados a Proteínas G/agonistas , Receptores Acoplados a Proteínas G/deficiência , Receptores Acoplados a Proteínas G/genética , Sistemas do Segundo Mensageiro/efeitos dos fármacos
2.
J Cereb Blood Flow Metab ; 42(9): 1650-1665, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35240875

RESUMO

Lactate can be used by neurons as an energy substrate to support their activity. Evidence suggests that lactate also acts on a metabotropic receptor called HCAR1, first described in the adipose tissue. Whether HCAR1 also modulates neuronal circuits remains unclear. In this study, using qRT-PCR, we show that HCAR1 is present in the human brain of epileptic patients who underwent resective surgery. In brain slices from these patients, pharmacological HCAR1 activation using a non-metabolized agonist decreased the frequency of both spontaneous neuronal Ca2+ spiking and excitatory post-synaptic currents (sEPSCs). In mouse brains, we found HCAR1 expression in different regions using a fluorescent reporter mouse line and in situ hybridization. In the dentate gyrus, HCAR1 is mainly present in mossy cells, key players in the hippocampal excitatory circuitry and known to be involved in temporal lobe epilepsy. By using whole-cell patch clamp recordings in mouse and rat slices, we found that HCAR1 activation causes a decrease in excitability, sEPSCs, and miniature EPSCs frequency of granule cells, the main output of mossy cells. Overall, we propose that lactate can be considered a neuromodulator decreasing synaptic activity in human and rodent brains, which makes HCAR1 an attractive target for the treatment of epilepsy.


Assuntos
Giro Denteado , Epilepsia , Neurônios , Receptores Acoplados a Proteínas G , Animais , Encéfalo , Giro Denteado/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Ácido Láctico , Camundongos , Neurônios/fisiologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo
3.
ACS Chem Neurosci ; 9(8): 2009-2015, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29741354

RESUMO

Astrocytes clear glutamate and potassium, both of which are released into the extracellular space during neuronal activity. These processes are intimately linked with energy metabolism. Whereas astrocyte glutamate uptake causes cytosolic and mitochondrial acidification, extracellular potassium induces bicarbonate-dependent cellular alkalinization. This study aimed at quantifying the combined impact of glutamate and extracellular potassium on mitochondrial parameters of primary cultured astrocytes. Glutamate in 3 mM potassium caused a stronger acidification of mitochondria compared to cytosol. 15 mM potassium caused alkalinization that was stronger in the cytosol than in mitochondria. While the combined application of 15 mM potassium and glutamate led to a marked cytosolic alkalinization, pH only marginally increased in mitochondria. Thus, potassium and glutamate effects cannot be arithmetically summed, which also applies to their effects on mitochondrial potential and respiration. The data implies that, because of the nonlinear interaction between the effects of potassium and glutamate, astrocytic energy metabolism will be differentially regulated.


Assuntos
Astrócitos/metabolismo , Espaço Extracelular/metabolismo , Ácido Glutâmico/metabolismo , Mitocôndrias/metabolismo , Potássio/metabolismo , Animais , Astrócitos/citologia , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/metabolismo , Citoplasma/metabolismo , Concentração de Íons de Hidrogênio , Camundongos Endogâmicos C57BL , Microscopia de Fluorescência , Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA