Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neth Heart J ; 29(3): 172, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33252706
2.
J Phys Chem A ; 109(42): 9437-42, 2005 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-16866392

RESUMO

The switching behavior of 1,2-bis(5-phenyl-2-methylthien-3-yl)perfluorocyclopentene and its nonfluorinated (perhydro) analogue are compared. For both molecules, the dynamics after optical excitation can be separated into three regimes: preswiching due to excited state mixing; the ring closure itself; postswitching related to vibrational cooling. The fluorinated version switches faster than its nonfluorinated analogue by about a factor of 4.7. This is explained by electronic level shifts near the crossing region between the S(1) and S(0) potential energy surfaces. In the nonfluorinated molecule the various levels involved in the switching have well-separated transition frequencies, which allow for a clear interpretation of experimental data. Thus, the fluorinated molecule makes a better (more efficient and faster) switch, but the nonfluorinated molecule provides a better model system for fundamental studies.

3.
Phys Rev Lett ; 91(20): 207402, 2003 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-14683393

RESUMO

We investigate photochromic molecular switches that are self-assembled on gold. We use two experimental techniques; namely, the mechanically controllable break-junction technique to measure electronic transport, and UV/Vis spectroscopy to measure absorption. We observe switching of the molecules from the conducting to the insulating state when illuminated with visible light (lambda=546 nm), in spite of the gold surface plasmon absorption present around this wavelength. However, we fail to observe the reverse process which should occur upon illumination with UV light (lambda=313 nm). We attribute this to quenching of the excited state of the molecule in the open form by the presence of gold.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA