Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Mol Life Sci ; 80(6): 141, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149819

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/metabolismo , Córtex Pré-Frontal/metabolismo , Biomarcadores , Proteínas tau/metabolismo
2.
PLoS Genet ; 15(12): e1008557, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31869332

RESUMO

TRAnsport Protein Particle complexes (TRAPPs) are ubiquitous regulators of membrane traffic mediating nucleotide exchange on the Golgi regulatory GTPases RAB1 and RAB11. In S. cerevisiae and metazoans TRAPPs consist of two large oligomeric complexes: RAB11-activating TRAPPII and RAB1-activating TRAPPIII. These share a common core TRAPPI hetero-heptamer, absent in metazoans but detected in minor proportions in yeast, likely originating from in vitro-destabilized TRAPPII/III. Despite overall TRAPP conservation, the budding yeast genome has undergone extensive loss of genes, and lacks homologues of some metazoan TRAPP subunits. With nearly twice the total number of genes of S. cerevisiae, another ascomycete Aspergillus nidulans has also been used for studies on TRAPPs. We combined size-fractionation chromatography with single-step purification coupled to mass-spectrometry and negative-stain electron microscopy to establish the relative abundance, composition and architecture of Aspergillus TRAPPs, which consist of TRAPPII and TRAPPIII in a 2:1 proportion, plus a minor amount of TRAPPI. We show that Aspergillus TRAPPIII contains homologues of metazoan TRAPPC11, TRAPPC12 and TRAPPC13 subunits, absent in S. cerevisiae, and establish that these subunits are recruited to the complex by Tca17/TRAPPC2L, which itself binds to the 'Trs33 side' of the complex. Thus Aspergillus TRAPPs compositionally resemble mammalian TRAPPs to a greater extent than those in budding yeast. Exploiting the ability of constitutively-active (GEF-independent, due to accelerated GDP release) RAB1* and RAB11* alleles to rescue viability of null mutants lacking essential TRAPP subunits, we establish that the only essential role of TRAPPs is activating RAB1 and RAB11, and genetically classify each essential subunit according to their role(s) in TRAPPII (TRAPPII-specific subunits) or TRAPPII and TRAPPIII (core TRAPP subunits). Constitutively-active RAB mutant combinations allowed examination of TRAPP composition in mutants lacking essential subunits, which led to the discovery of a stable Trs120/Trs130/Trs65/Tca17 TRAPPII-specific subcomplex whose Trs20- and Trs33-dependent assembly onto core TRAPP generates TRAPPII.


Assuntos
Aspergillus nidulans/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Cromatografia em Gel , Proteínas Fúngicas/metabolismo , Humanos , Mamíferos/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/metabolismo
3.
J Am Chem Soc ; 143(40): 16486-16501, 2021 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-34477370

RESUMO

Mammalian metallothioneins (MTs) are a group of cysteine-rich proteins that bind metal ions in two α- and ß-domains and represent a major cellular Zn(II)/Cu(I) buffering system in the cell. At cellular free Zn(II) concentrations (10-11-10-9 M), MTs do not exist in fully loaded forms with seven Zn(II)-bound ions (Zn7MTs). Instead, MTs exist as partially metal-depleted species (Zn4-6MT) because their Zn(II) binding affinities are on the nano- to picomolar range comparable to the concentrations of cellular Zn(II). The mode of action of MTs remains poorly understood, and thus, the aim of this study is to characterize the mechanism of Zn(II) (un)binding to MTs, the thermodynamic properties of the Zn1-6MT2 species, and their mechanostability properties. To this end, native mass spectrometry (MS) and label-free quantitative bottom-up and top-down MS in combination with steered molecular dynamics simulations, well-tempered metadynamics (WT-MetaD), and parallel-bias WT-MetaD (amounting to 3.5 µs) were integrated to unravel the chemical coordination of Zn(II) in all Zn1-6MT2 species and to explain the differences in binding affinities of Zn(II) ions to MTs. Differences are found to be the result of the degree of water participation in MT (un)folding and the hyper-reactive character of Cys21 and Cys29 residues. The thermodynamics properties of Zn(II) (un)binding to MT2 are found to differ from those of Cd(II), justifying their distinctive roles. The potential of this integrated strategy in the investigation of numerous unexplored metalloproteins is attested by the results highlighted in the present study.


Assuntos
Metalotioneína
4.
PLoS Genet ; 14(4): e1007291, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29608571

RESUMO

Intracellular traffic in Aspergillus nidulans hyphae must cope with the challenges that the high rates of apical extension (1µm/min) and the long intracellular distances (>100 µm) impose. Understanding the ways in which the hyphal tip cell coordinates traffic to meet these challenges is of basic importance, but is also of considerable applied interest, as fungal invasiveness of animals and plants depends critically upon maintaining these high rates of growth. Rapid apical extension requires localization of cell-wall-modifying enzymes to hyphal tips. By combining genetic blocks in different trafficking steps with multidimensional epifluorescence microscopy and quantitative image analyses we demonstrate that polarization of the essential chitin-synthase ChsB occurs by indirect endocytic recycling, involving delivery/exocytosis to apices followed by internalization by the sub-apical endocytic collar of actin patches and subsequent trafficking to TGN cisternae, where it accumulates for ~1 min before being re-delivered to the apex by a RAB11/TRAPPII-dependent pathway. Accordingly, ChsB is stranded at the TGN by Sec7 inactivation but re-polarizes to the apical dome if the block is bypassed by a mutation in geaAgea1 that restores growth in the absence of Sec7. That polarization is independent of RAB5, that ChsB predominates at apex-proximal cisternae, and that upon dynein impairment ChsB is stalled at the tips in an aggregated endosome indicate that endocytosed ChsB traffics to the TGN via sorting endosomes functionally located upstream of the RAB5 domain and that this step requires dynein-mediated basipetal transport. It also requires RAB6 and its effector GARP (Vps51/Vps52/Vps53/Vps54), whose composition we determined by MS/MS following affinity chromatography purification. Ablation of any GARP component diverts ChsB to vacuoles and impairs growth and morphology markedly, emphasizing the important physiological role played by this pathway that, we propose, is central to the hyphal mode of growth.


Assuntos
Aspergillus nidulans/fisiologia , Endocitose , Hifas/crescimento & desenvolvimento , Rede trans-Golgi/metabolismo , Aspergillus nidulans/enzimologia , Aspergillus nidulans/crescimento & desenvolvimento , Quitina Sintase/metabolismo
5.
Carcinogenesis ; 41(2): 203-213, 2020 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-31095674

RESUMO

Pancreatic adenocarcinoma upregulated factor (PAUF), also known as ZG16B, was previously found in the secretome of metastatic colorectal cancer cells. Here, we demonstrated the presence of PAUF at the intracellular level and its multiple effects on cancer progression. An initial decline of PAUF expression was observed at early stages of colorectal cancer followed by an increase at the metastatic site. PAUF was located at different cellular compartments: membrane-associated vesicles, endosomes, microtubule-associated vesicles, cell growth cones and the cell nucleus. PAUF loss in two colorectal cancer cell lines caused severe alterations in the cell phenotype and cell cycle, including tetraploidy, extensive genomic alterations, micronuclei and increased apoptosis. An exhaustive analysis of the PAUF interactome using different proteomic approaches revealed the presence of multiple components of the cell cycle, mitotic checkpoint, Wnt pathway and intracellular transport. Among the interacting proteins we found ZW10, a moonlighting protein with a dual function in membrane trafficking and mitosis. In addition, PAUF silencing was associated to APC loss and increased ß-catenin nuclear expression. Altogether, our results suggest that PAUF depletion increases aneuploidy, promotes apoptosis and activates the Wnt/ß-catenin pathway in colorectal cancer cells facilitating cancer progression. In summary, PAUF behaves as a multifunctional protein, with different roles in cancer progression according to the extra- or intracellular expression, suggesting a therapeutic value for colorectal cancer.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Neoplasias Colorretais/patologia , Lectinas/metabolismo , Neoplasias Hepáticas/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Via de Sinalização Wnt , Proteína da Polipose Adenomatosa do Colo/metabolismo , Aneuploidia , Linhagem Celular Tumoral , Colo/patologia , Neoplasias Colorretais/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Lectinas/genética , Fígado/patologia , Neoplasias Hepáticas/secundário , Mapeamento de Interação de Proteínas , Proteômica , Reto/patologia , Regulação para Cima
6.
J Proteome Res ; 18(3): 1255-1263, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30592607

RESUMO

Cisplatin (CDDP) is a widely used agent in the treatment of neuroblastoma. Unfortunately, the development of acquired chemoresistance limits its clinical use. To gain a detailed understanding of the mechanisms underlying the development of such chemoresistance, we comparatively analyzed established cisplatin-resistant neuroblastoma cell line (UKF-NB-4CDDP) and its sensitive counterpart (UKF-NB-4). First, using viability screenings, we confirmed the decreased sensitivity of tested cells to cisplatin and identified a cross-resistance to carboplatin and oxaliplatin. Then, the proteomic signatures were analyzed using nano liquid chromatography with tandem mass spectrometry. Among the proteins responsible for UKF-NB-4CDDP chemoresistance, ion channels transport family proteins, ATP-binding cassette superfamily proteins (ATP = adenosine triphosphate), solute carrier-mediated trans-membrane transporters, proteasome complex subunits, and V-ATPases were identified. Moreover, we detected markedly higher proteasome activity in UKF-NB-4CDDP cells and a remarkable lysosomal enrichment that can be inhibited by bafilomycin A to sensitize UKF-NB-4CDDP to CDDP. Our results indicate that lysosomal sequestration and proteasome activity may be one of the key mechanisms responsible for intrinsic chemoresistance of neuroblastoma to CDDP.


Assuntos
Cisplatino/farmacologia , Lisossomos/genética , Neuroblastoma/tratamento farmacológico , Proteômica , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cisplatino/efeitos adversos , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neuroblastoma/genética , Neuroblastoma/patologia , Complexo de Endopeptidases do Proteassoma/genética , Transcriptoma/genética
7.
J Proteome Res ; 18(8): 3052-3066, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31192604

RESUMO

Olive pollen is a major allergenic source worldwide due to its extensive cultivation. We have combined available genomics data with a comprehensive proteomics approach to get the annotated olive tree (Olea europaea L.) pollen proteome and define its complex allergenome. A total of 1907 proteins were identified by LC-MS/MS using predicted protein sequences from its genome. Most proteins (60%) were predicted to possess catalytic activity and be involved in metabolic processes. In total, 203 proteins belonging to 47 allergen families were found in olive pollen. A peptidyl-prolyl cis-trans isomerase, cyclophilin, produced in Escherichia coli, was found as a new olive pollen allergen (Ole e 15). Most Ole e 15-sensitized patients were children (63%) and showed strong IgE recognition to the allergen. Ole e 15 shared high sequence identity with other plant, animal, and fungal cyclophilins and presented high IgE cross-reactivity with pollen, plant food, and animal extracts.


Assuntos
Alérgenos/genética , Antígenos de Plantas/genética , Ciclofilinas/genética , Ciclofilinas/imunologia , Proteoma/genética , Alérgenos/imunologia , Alérgenos/isolamento & purificação , Sequência de Aminoácidos/genética , Animais , Criança , Cromatografia Líquida , Reações Cruzadas , Humanos , Imunoglobulina E/genética , Imunoglobulina E/imunologia , Olea/efeitos adversos , Olea/genética , Olea/imunologia , Pólen/efeitos adversos , Pólen/genética , Pólen/imunologia , Proteoma/imunologia , Proteômica , Espectrometria de Massas em Tandem
8.
Fungal Genet Biol ; 123: 78-86, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30550852

RESUMO

Coatomer-I (COPI) is a heteromeric protein coat that facilitates the budding of membranous carriers mediating Golgi-to-ER and intra-Golgi transport. While the structural features of COPI have been thoroughly investigated, its physiological role is insufficiently understood. Here we exploit the amenability of A. nidulans for studying intracellular traffic, taking up previous studies by Breakspear et al. (2007) with the α-COP/CopA subunit of COPI. Endogenously tagged α-COP/CopA largely localizes to SedVSed5 syntaxin-containing early Golgi cisterna, and acute inactivation of ER-to-Golgi traffic delocalizes COPI to a haze, consistent with the cisternal maturation model. In contrast, the Golgi localization of COPI is independent of the TGN regulators HypBSec7 and HypATrs120, implying that COPI budding predominates at the SedVSed5 early Golgi, with lesser contribution of the TGN. This finding agrees with the proposed role of COPI-mediated intra-Golgi retrograde traffic in driving cisternal maturation, which predicts that the capacity of the TGN to generate COPI carriers is low. The COPI early Golgi compartments intimately associates with Sec13-containing ER exit sites. Characterization of the heat-sensitive copA1ts (sodVIC1) mutation showed that it results in a single residue substitution in the ε-COP-binding Carboxyl-Terminal-Domain of α-COP that likely destabilizes its folding. However, we show that Golgi disorganization by copA1ts necessitates >150 min-long incubation at 42 °C. This weak subcellular phenotype makes it unsuitable for inactivating COPI traffic acutely for microscopy studies, and explains the aneuploidy-stabilizing role of the mutation at subrestrictive temperatures.


Assuntos
Aspergillus nidulans/ultraestrutura , Complexo I de Proteína do Envoltório/química , Retículo Endoplasmático/ultraestrutura , Complexo de Golgi/ultraestrutura , Aspergillus nidulans/química , Aspergillus nidulans/genética , Transporte Biológico/genética , Complexo I de Proteína do Envoltório/metabolismo , Retículo Endoplasmático/química , Complexo de Golgi/química , Microscopia de Fluorescência , Mutação , Fenótipo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética
9.
Proc Natl Acad Sci U S A ; 112(14): 4346-51, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25831508

RESUMO

The oligomeric complex transport protein particle I (TRAPPI) mediates nucleotide exchange on the RAB GTPase RAB1/Ypt1. TRAPPII is composed of TRAPPI plus three additional subunits, Trs120, Trs130, and Trs65. Unclear is whether TRAPPII mediates nucleotide exchange on RAB1/Ypt1, RAB11/Ypt31, or both. In Aspergillus nidulans, RabO(RAB1) resides in the Golgi, RabE(RAB11) localizes to exocytic post-Golgi carriers undergoing transport to the apex, and hypA encodes Trs120. RabE(RAB11), but not RabO(RAB1), immunoprecipitates contain Trs120/Trs130/Trs65, demonstrating specific association of TRAPPII with RabE(RAB11) in vivo. hypA1(ts) rapidly shifts RabE(RAB11), but not RabO(RAB1), to the cytosol, consistent with HypA(Trs120) being specifically required for RabE(RAB11) activation. Missense mutations rescuing hypA1(ts) at 42 °C mapped to rabE, affecting seven residues. Substitutions in six, of which four resulted in 7- to 36-fold accelerated GDP release, rescued lethality associated to TRAPPII deficiency, whereas equivalent substitutions in RabO(RAB1) did not, establishing that the essential role of TRAPPII is facilitating RabE(RAB11) nucleotide exchange. In vitro, TRAPPII purified with HypA(Trs120)-S-tag accelerates nucleotide exchange on RabE(RAB11) and, paradoxically, to a lesser yet substantial extent, on RabO(RAB1). Evidence obtained by exploiting hypA1-mediated destabilization of HypA(Trs120)/HypC(Trs130)/Trs65 assembly onto the TRAPPI core indicates that these subunits sculpt a second RAB binding site on TRAPP apparently independent from that for RabO(RAB1), which would explain TRAPPII in vitro activity on two RABs. Using A. nidulans in vivo microscopy, we show that HypA(Trs120) colocalizes with RabE(RAB11), arriving at late Golgi cisternae as they dissipate into exocytic carriers. Thus, TRAPPII marks, and possibly determines, the Golgi-to-post-Golgi transition.


Assuntos
Aspergillus nidulans/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica , Complexo de Golgi/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Aspergillus nidulans/metabolismo , Sítios de Ligação , Citosol/metabolismo , Escherichia coli/metabolismo , Exocitose , Proteínas Fúngicas/genética , Glutationa Transferase/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Guanosina Difosfato/metabolismo , Microscopia de Fluorescência , Mutação , Mutação de Sentido Incorreto , Fenótipo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Proteínas de Transporte Vesicular/genética , Proteínas rab de Ligação ao GTP/genética
11.
Biochim Biophys Acta Proteins Proteom ; 1865(8): 1067-1076, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28502749

RESUMO

A highly prevalent IgE-binding protein band of 28kDa is observed when Salsola kali pollen extract is incubated with individual sera from Amaranthaceae pollen sensitized patients. By an immunoproteomic analysis of S. kali pollen extract, we identified this protein band as an allergenic polygalacturonase enzyme. The allergen, named Sal k 6, exhibits a pI of 7.14 and a molecular mass of 39,554.2Da. It presents similarities to Platanaceae, Poaceae, and Cupressaceae allergenic polygalacturonases. cDNA-encoding sequence was subcloned into the pET41b vector and produced in bacteria as a His-tag fusion recombinant protein. The far-UV CD spectrum determined that rSal k 6 was folded. Immunostaining of the S. kali pollen protein extract with a rSal k 6-specific pAb and LC-MS/MS proteomic analyses confirmed the co-existence of the 28kDa band together with an allergenic band of about 47kDa in the pollen extract. Therefore, the 28kDa was assigned as a natural degradation product of the 47kDa integral polygalacturonase. The IgE-binding inhibition to S. kali pollen extract using rSal k 6 as inhibitor showed that signals directed to both protein bands of 28 and 47kDa were completely abrogated. The average prevalence of rSal k 6 among the three populations analyzed was 30%, with values correlating well with the levels of grains/m3 of Amaranthaceae pollen. Sal k 6 shares IgE epitopes with Oleaceae members (Fraxinus excelsior, Olea europaea and Syringa vulgaris), with IgE-inhibition values ranging from 20% to 60%, respectively. No IgE-inhibition was observed with plant-derived food extracts.


Assuntos
Antígenos de Plantas/metabolismo , Glicosídeos/metabolismo , Imunoglobulina E/metabolismo , Proteínas de Plantas/metabolismo , Pólen/metabolismo , Salsola/metabolismo , Amaranthaceae/química , Amaranthaceae/metabolismo , Sequência de Aminoácidos , Antígenos de Plantas/química , Sequência de Bases , Clonagem Molecular/métodos , Reações Cruzadas/fisiologia , Glicosídeos/química , Oleaceae/química , Oleaceae/metabolismo , Proteínas de Plantas/química , Pólen/química , Ligação Proteica/fisiologia , Proteômica/métodos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Salsola/química , Alinhamento de Sequência
12.
Biochem J ; 452(3): 575-84, 2013 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-23548202

RESUMO

LiP (lignin peroxidase) from Trametopsis cervina has an exposed catalytic tyrosine residue (Tyr181) instead of the tryptophan conserved in other lignin-degrading peroxidases. Pristine LiP showed a lag period in VA (veratryl alcohol) oxidation. However, VA-LiP (LiP after treatment with H2O2 and VA) lacked this lag, and H2O2-LiP (H2O2-treated LiP) was inactive. MS analyses revealed that VA-LiP includes one VA molecule covalently bound to the side chain of Tyr181, whereas H2O2-LiP contains a hydroxylated Tyr181. No adduct is formed in the Y171N variant. Molecular docking showed that VA binding is favoured by sandwich π stacking with Tyr181 and Phe89. EPR spectroscopy after peroxide activation of the pre-treated LiPs showed protein radicals other than the tyrosine radical found in pristine LiP, which were assigned to a tyrosine-VA adduct radical in VA-LiP and a dihydroxyphenyalanine radical in H2O2-LiP. Both radicals are able to oxidize large low-redox-potential substrates, but H2O2-LiP is unable to oxidize high-redox-potential substrates. Transient-state kinetics showed that the tyrosine-VA adduct strongly promotes (>100-fold) substrate oxidation by compound II, the rate-limiting step in catalysis. The novel activation mechanism is involved in ligninolysis, as demonstrated using lignin model substrates. The present paper is the first report on autocatalytic modification, resulting in functional alteration, among class II peroxidases.


Assuntos
Proteínas Fúngicas/química , Lignina/metabolismo , Peroxidases/química , Trametes/enzimologia , Tirosina/química , Ativação Enzimática/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Ligação Proteica/fisiologia , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
13.
Biomark Res ; 12(1): 38, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594765

RESUMO

BACKGROUND & AIMS: Metallothionein-3 (hMT3) is a structurally unique member of the metallothioneins family of low-mass cysteine-rich proteins. hMT3 has poorly characterized functions, and its importance for hepatocellular carcinoma (HCC) cells has not yet been elucidated. Therefore, we investigated the molecular mechanisms driven by hMT3 with a special emphasis on susceptibility to sorafenib. METHODS: Intrinsically sorafenib-resistant (BCLC-3) and sensitive (Huh7) cells with or without up-regulated hMT3 were examined using cDNA microarray and methods aimed at mitochondrial flux, oxidative status, cell death, and cell cycle. In addition, in ovo/ex ovo chick chorioallantoic membrane (CAM) assays were conducted to determine a role of hMT3 in resistance to sorafenib and associated cancer hallmarks, such as angiogenesis and metastastic spread. Molecular aspects of hMT3-mediated induction of sorafenib-resistant phenotype were delineated using mass-spectrometry-based proteomics. RESULTS: The phenotype of sensitive HCC cells can be remodeled into sorafenib-resistant one via up-regulation of hMT3. hMT3 has a profound effect on mitochondrial respiration, glycolysis, and redox homeostasis. Proteomic analyses revealed a number of hMT3-affected biological pathways, including exocytosis, glycolysis, apoptosis, angiogenesis, and cellular stress, which drive resistance to sorafenib. CONCLUSIONS: hMT3 acts as a multifunctional driver capable of inducing sorafenib-resistant phenotype of HCC cells. Our data suggest that hMT3 and related pathways could serve as possible druggable targets to improve therapeutic outcomes in patients with sorafenib-resistant HCC.

14.
iScience ; 25(7): 104514, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35754728

RESUMO

In the apex-directed RAB11 exocytic pathway of Aspergillus nidulans, kinesin-1/KinA conveys secretory vesicles (SVs) to the hyphal tip, where they are transferred to the type V myosin MyoE. MyoE concentrates SVs at an apical store located underneath the PM resembling the presynaptic active zone. A rod-shaped RAB11 effector, UDS1, and the intrinsically disordered and coiled-coil HMSV associate with MyoE in a stable HUM (HMSV-UDS1-MyoE) complex recruited by RAB11 to SVs through an interaction network involving RAB11 and HUM components, with the MyoE globular tail domain (GTD) binding both HMSV and RAB11-GTP and RAB11-GTP binding both the MyoE-GTD and UDS1. UDS1 bridges RAB11-GTP to HMSV, an avid interactor of the MyoE-GTD. The interaction between the UDS1-HMSV sub-complex and RAB11-GTP can be reconstituted in vitro. Ablating UDS1 or HMSV impairs actomyosin-mediated transport of SVs to the apex, resulting in spreading of RAB11 SVs across the apical dome as KinA/microtubule-dependent transport gains prominence.

15.
Front Microbiol ; 13: 1077375, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36713162

RESUMO

Leuconostoc lactis is found in vegetables, fruits, and meat and is used by the food industry in the preparation of dairy products, wines, and sugars. We have previously demonstrated that the dextransucrase of Lc. lactis (DsrLL) AV1n produces a high-molecular-weight dextran from sucrose, indicating its potential use as a dextran-forming starter culture. We have also shown that this bacterium was able to produce 10-fold higher levels of dextran at 20°C than at 37°C, at the former temperature accompanied by an increase in dsrLL gene expression. However, the general physiological response of Lc. lactis AV1n to cold temperature in the presence of sucrose, leading to increased production of dextran, has not been yet investigated. Therefore, we have used a quantitative proteomics approach to investigate the cold temperature-induced changes in the proteomic profile of this strain in comparison to its proteomic response at 37°C. In total, 337 proteins were found to be differentially expressed at the applied significance criteria (adjusted p-value ≤ 0.05, FDR 5%, and with a fold-change ≥ 1.5 or ≤ 0.67) with 204 proteins overexpressed, among which 13% were involved in protein as well as cell wall, and envelope component biosynthesis including DsrLL. Proteins implicated in cold stress were expressed at a high level at 20°C and possibly play a role in the upregulation of DsrLL, allowing the efficient synthesis of the protein essential for its adaptation to cold. Post-transcriptional regulation of DsrLL expression also seems to take place through the interplay of exonucleases and endonucleases overexpressed at 20°C, which would influence the half-life of the dsrLL transcript. Furthermore, the mechanism of cold resistance of Lc. lactis AV1n seems to be also based on energy saving through a decrease in growth rate mediated by a decrease in carbohydrate metabolism and its orientation toward the production pathways for storage molecules. Thus, this better understanding of the responses to low temperature and mechanisms for environmental adaptation of Lc. lactis could be exploited for industrial use of strains belonging to this species.

16.
J Pathol Clin Res ; 8(6): 495-508, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36134447

RESUMO

The necessity to accurately predict recurrence and clinical outcome in early stage colorectal cancer (CRC) is critical to identify those patients who may benefit from adjuvant chemotherapy. Here, we developed and validated a gene-based risk-score algorithm for patient stratification and personalised treatment in early stage disease based on alterations in the secretion of metastasis-related proteins. A quantitative label-free proteomic analysis of the secretome of highly and poorly metastatic CRC cell lines with different genetic backgrounds revealed 153 differentially secreted proteins (fold-change >5). These changes in the secretome were validated at the transcriptomic level. Starting from 119 up-regulated proteins, a six-gene/protein-based prognostic signature composed of IGFBP3, CD109, LTBP1, PSAP, BMP1, and NPC2 was identified after sequential discovery, training, and validation in four different cohorts. This signature was used to develop a risk-score algorithm, named SEC6, for patient stratification. SEC6 risk-score components showed higher expression in the poor prognosis CRC subtypes: consensus molecular subtype 4 (CMS4), CRIS-B, and stem-like. High expression of the signature was also associated with patients showing dMMR, CIMP+ status, and BRAF mutations. In addition, the SEC6 signature was associated with lower overall survival, progression-free interval, and disease-specific survival in stage II and III patients. SEC6-based risk stratification indicated that 5-FU treatment was beneficial for low-risk patients, whereas only aggressive treatments (FOLFOX and FOLFIRI) provided benefits to high-risk patients in stages II and III. In summary, this novel risk-score demonstrates the value of the secretome compartment as a reliable source for the retrieval of biomarkers with high prognostic and chemotherapy-predictive capacity, providing a potential new tool for tailoring decision-making in patient care.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Biomarcadores Tumorais/análise , Neoplasias do Colo/patologia , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Fluoruracila/uso terapêutico , Perfilação da Expressão Gênica , Humanos , Prognóstico , Proteômica , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/uso terapêutico , Secretoma , Transcriptoma
17.
Cells ; 11(3)2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-35159257

RESUMO

Metastasis is the primary cause of colorectal cancer (CRC) death. The liver and lung, besides adjacent lymph nodes, are the most common sites of metastasis. Here, we aimed to study the lymph nodes, liver, and lung CRC metastasis by quantitative spatial proteomics analysis using CRC cell-based models that recapitulate these metastases. The isogenic KM12 cell system composed of the non-metastatic KM12C cells, liver metastatic KM12SM cells, and liver and lung metastatic KM12L4a cells, and the isogenic non-metastatic SW480 and lymph nodes metastatic SW620 cells, were used. Cells were fractionated to study by proteomics five subcellular fractions corresponding to cytoplasm, membrane, nucleus, chromatin-bound proteins, and cytoskeletal proteins, and the secretome. Trypsin digested extracts were labeled with TMT 11-plex and fractionated prior to proteomics analysis on a Q Exactive. We provide data on protein abundance and localization of 4710 proteins in their different subcellular fractions, depicting dysregulation of proteins in abundance and/or localization in the most common sites of CRC metastasis. After bioinformatics, alterations in abundance and localization for selected proteins from diverse subcellular localizations were validated via WB, IF, IHC, and ELISA using CRC cells, patient tissues, and plasma samples. Results supported the relevance of the proteomics results in an actual CRC scenario. It was particularly relevant that the measurement of GLG1 in plasma showed diagnostic ability of advanced stages of the disease, and that the mislocalization of MUC5AC and BAIAP2 in the nucleus and membrane, respectively, was significantly associated with poor prognosis of CRC patients. Our results demonstrate that the analysis of cell extracts dilutes protein alterations in abundance in specific localizations that might only be observed studying specific subcellular fractions, as here observed for BAIAP2, GLG1, PHYHIPL, TNFRSF10A, or CDKN2AIP, which are interesting proteins that should be further analyzed in CRC metastasis.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Neoplasias Pulmonares , Neoplasias Retais , Neoplasias Colorretais/patologia , Humanos , Fígado/metabolismo , Linfonodos/patologia , Proteômica/métodos
18.
J Proteomics ; 251: 104409, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-34758407

RESUMO

Global analysis of protein phosphorylation by mass spectrometry proteomic techniques has emerged in the last decades as a powerful tool in biological and biomedical research. However, there are several factors that make the global study of the phosphoproteome more challenging than measuring non-modified proteins. The low stoichiometry of the phosphorylated species and the need to retrieve residue specific information require particular attention on sample preparation, data acquisition and processing to ensure reproducibility, qualitative and quantitative robustness and ample phosphoproteome coverage in phosphoproteomic workflows. Aiming to investigate the effect of different variables in the performance of proteome wide phosphoprotein analysis protocols, ProteoRed-ISCIII and EuPA launched the Proteomics Multicentric Experiment 11 (PME11). A reference sample consisting of a yeast protein extract spiked in with different amounts of a phosphomix standard (Sigma/Merck) was distributed to 31 laboratories around the globe. Thirty-six datasets from 23 laboratories were analyzed. Our results indicate the suitability of the PME11 reference sample to benchmark and optimize phosphoproteomics strategies, weighing the influence of different factors, as well as to rank intra and inter laboratory performance.


Assuntos
Proteoma , Proteômica , Laboratórios , Fosfoproteínas/análise , Fosforilação , Proteoma/análise , Proteômica/métodos , Padrões de Referência , Reprodutibilidade dos Testes
19.
Sci Rep ; 11(1): 5496, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33750814

RESUMO

Metallothionein-3 has poorly characterized functions in neuroblastoma. Cisplatin-based chemotherapy is a major regimen to treat neuroblastoma, but its clinical efficacy is limited by chemoresistance. We investigated the impact of human metallothionein-3 (hMT3) up-regulation in neuroblastoma cells and the mechanisms underlying the cisplatin-resistance. We confirmed the cisplatin-metallothionein complex formation using mass spectrometry. Overexpression of hMT3 decreased the sensitivity of neuroblastoma UKF-NB-4 cells to cisplatin. We report, for the first time, cisplatin-sensitive human UKF-NB-4 cells remodelled into cisplatin-resistant cells via high and constitutive hMT3 expression in an in vivo model using chick chorioallantoic membrane assay. Comparative proteomic analysis demonstrated that several biological pathways related to apoptosis, transport, proteasome, and cellular stress were involved in cisplatin-resistance in hMT3 overexpressing UKF-NB-4 cells. Overall, our data confirmed that up-regulation of hMT3 positively correlated with increased cisplatin-chemoresistance in neuroblastoma, and a high level of hMT3 could be one of the causes of frequent tumour relapses.


Assuntos
Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Metalotioneína 3/biossíntese , Proteínas de Neoplasias/biossíntese , Animais , Linhagem Celular Tumoral , Embrião de Galinha , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Metalotioneína 3/genética , Proteínas de Neoplasias/genética
20.
Cancers (Basel) ; 13(4)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672863

RESUMO

Low-grade, early-stage endometrial carcinoma (EC) is the most frequent malignant tumor of the uterine corpus. However, the molecular alterations that underlie these tumors are far from being fully understood. The purpose of this study is to describe dysregulated molecular pathways from EC patients. Sixteen samples of tumor tissue and paired healthy controls were collected and both were subjected to mass spectrometry (MS)/MS proteomic analysis. Gene ontology and pathway analysis was performed to discover dysregulated pathways and/or proteins using different databases and bioinformatic tools. Dysregulated pathways were cross-validated in an independent external cohort. Cell signaling, immune response, and cell death-associated pathways were robustly identified. The SLIT/ROBO signaling pathway demonstrated dysregulation at the proteomic and transcriptomic level. Necroptosis and ferroptosis were cell death-associated processes aberrantly regulated, in addition to apoptosis. Immune response-associated pathways showed a dominance of innate immune responses. Tumor immune infiltrates measured by immunofluorescence demonstrated diverse lymphoid and myeloid populations. Our results suggest a role of SLIT/ROBO, necroptosis, and ferroptosis, as well as a prominent role of innate immune response in low-grade, early-stage EC. These results could guide future research in this group of tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA