Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Lipid Res ; 64(12): 100479, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37981011

RESUMO

Oncosterone (6-oxo-cholestane-3ß,5α-diol; OCDO) is an oncometabolite and a tumor promoter on estrogen receptor alpha-positive breast cancer (ER(+) BC) and triple-negative breast cancers (TN BC). OCDO is an oxysterol formed in three steps from cholesterol: 1) oxygen addition at the double bond to give α- or ß- isomers of 5,6-epoxycholestanols (5,6-EC), 2) hydrolyses of the epoxide ring of 5,6-ECs to give cholestane-3ß,5α,6ß-triol (CT), and 3) oxidation of the C6 hydroxyl of CT to give OCDO. On the other hand, cholesterol can be hydroxylated by CYP27A1 at the ultimate methyl carbon of its side chain to give 27-hydroxycholesterol ((25R)-Cholest-5-ene-3beta,26-diol, 27HC), which is a tumor promoter for ER(+) BC. It is currently unknown whether OCDO and its precursors can be hydroxylated at position C27 by CYP27A1, as is the impact of such modification on the proliferation of ER(+) and TN BC cells. We investigated, herein, whether 27H-5,6-ECs ((25R)-5,6-epoxycholestan-3ß,26-diol), 27H-CT ((25R)-cholestane-3ß,5α,6ß,26-tetrol) and 27H-OCDO ((25R)-cholestane-6-oxo-3ß,5α,26-triol) exist as metabolites and can be produced by cells expressing CYP27A1. We report, for the first time, that these compounds exist as metabolites in humans. We give pharmacological and genetic evidence that CYP27A1 is responsible for their production. Importantly, we found that 27-hydroxy-OCDO (27H-OCDO) inhibits BC cell proliferation and blocks OCDO and 27-HC-induced proliferation in BC cells, showing that this metabolic conversion commutes the proliferative properties of OCDO into antiproliferative ones. These data suggest an unprecedented role of CYP27A1 in the control of breast carcinogenesis by inhibiting the tumor promoter activities of oncosterone and 27-HC.


Assuntos
Neoplasias da Mama , Oxisteróis , Humanos , Feminino , Hidroxilação , Colesterol/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Carcinógenos/metabolismo , Colestanotriol 26-Mono-Oxigenase
2.
Proc Natl Acad Sci U S A ; 114(44): E9346-E9355, 2017 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-29078321

RESUMO

Breast cancer (BC) remains the primary cause of death from cancer among women worldwide. Cholesterol-5,6-epoxide (5,6-EC) metabolism is deregulated in BC but the molecular origin of this is unknown. Here, we have identified an oncometabolism downstream of 5,6-EC that promotes BC progression independently of estrogen receptor α expression. We show that cholesterol epoxide hydrolase (ChEH) metabolizes 5,6-EC into cholestane-3ß,5α,6ß-triol, which is transformed into the oncometabolite 6-oxo-cholestan-3ß,5α-diol (OCDO) by 11ß-hydroxysteroid-dehydrogenase-type-2 (11ßHSD2). 11ßHSD2 is known to regulate glucocorticoid metabolism by converting active cortisol into inactive cortisone. ChEH inhibition and 11ßHSD2 silencing inhibited OCDO production and tumor growth. Patient BC samples showed significant increased OCDO levels and greater ChEH and 11ßHSD2 protein expression compared with normal tissues. The analysis of several human BC mRNA databases indicated that 11ßHSD2 and ChEH overexpression correlated with a higher risk of patient death, highlighting that the biosynthetic pathway producing OCDO is of major importance to BC pathology. OCDO stimulates BC cell growth by binding to the glucocorticoid receptor (GR), the nuclear receptor of endogenous cortisol. Interestingly, high GR expression or activation correlates with poor therapeutic response or prognosis in many solid tumors, including BC. Targeting the enzymes involved in cholesterol epoxide and glucocorticoid metabolism or GR may be novel strategies to prevent and treat BC.


Assuntos
Neoplasias da Mama/metabolismo , Carcinógenos/metabolismo , Colesterol/metabolismo , Receptores de Glucocorticoides/metabolismo , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Colesterol/análogos & derivados , Epóxido Hidrolases/metabolismo , Receptor alfa de Estrogênio/metabolismo , Feminino , Células HEK293 , Humanos , Células MCF-7 , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , RNA Mensageiro/metabolismo
3.
Molecules ; 24(3)2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30704124

RESUMO

Umbelliprenin has recently been shown to have great potential as a skin whitening agent. Wishing to investigate the same effect in plant species known to biosynthesize this coumarin, three plants belonging to the Apiaceae family, namely Anethum graveolens L. (dill), Pimpinella anisum L. (anise), and Ferulago campestris (Besser) Grecescu (field ferula) were screened by HPLC analysis for their respective content of umbelliprenin in extracts obtained with different solvent mixtures and by maceration and ultrasound-assisted processes. EtOH was shown to be the best solvent, providing umbelliprenin yields ranging from 1.7% to 14.4% (with respect to the total amount of extract obtained). Extracts with the highest content of this farnesyloxycoumarin were then assayed as modulators of melanogenesis in cultured murine Melan A cells employing the same umbelliprenin obtained by chemical synthesis as the reference. A parallelism between the content of the coumarin and the recorded depigmenting effect (60% for the EtOH extract of F. campestris as the best value) was revealed for all plants extracts when applied at a dose of 100 µg/mL. Our results demonstrate that the same potential of umbelliprenin can be ascribed also to umbelliprenin-enriched plant extracts which reinforces enforce the widespread use of phyto-preparations for cosmetic purposes (e.g., A. graveolens).


Assuntos
Anethum graveolens/química , Apiaceae/química , Pimpinella/química , Extratos Vegetais/farmacologia , Preparações Clareadoras de Pele/farmacologia , Umbeliferonas/farmacologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Camundongos , Estrutura Molecular , Extratos Vegetais/química , Sementes/química , Preparações Clareadoras de Pele/química , Umbeliferonas/química
4.
J Nat Prod ; 80(9): 2424-2431, 2017 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-28853883

RESUMO

Umbelliprenin is a secondary plant metabolite that displays promising chemopreventive, anti-inflammatory, and antigenotoxic properties. It possesses potential for applications to human welfare notably to prevent the emergence of cancer. For this purpose, stability studies are needed to define proper storage conditions and adapted formulations for this drug candidate. The identification of degradative products is a major concern for the preclinical development of umbelliprenin, providing also interesting information related to potential original phytochemicals formed in plants exposed to stressors. The stability profile of umbelliprenin under various stress conditions including exposure to heat, light, oxidation, and hydrolytic medium was assessed via HPLC/UV data. The data support that umbelliprenin undergoes inter- and intramolecular [2+2] cycloaddition under light exposure, leading respectively to a cyclobutane-umbelliprenin dimer and a 16-membered macrocycle. Their structures were characterized via MS and NMR data. It was shown that UV-A filters prevent this process, whereas UV-B filters and antioxidants are not or weakly effective. The study provides useful information for the preclinical development of umbelliprenin as an original chemopreventive agent.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/química , Antioxidantes/farmacologia , Apiaceae/química , Cumarínicos/química , Cumarínicos/farmacologia , Umbeliferonas/química , Humanos , Hidrólise , Estrutura Molecular , Oxirredução , Prenilação
5.
Biochem Biophys Res Commun ; 446(3): 681-6, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24406163

RESUMO

Dendrogenin A (DDA) and dendrogenin B (DDB) are new aminoalkyl oxysterols which display re-differentiation of tumor cells of neuronal origin at nanomolar concentrations. We analyzed the influence of dendrogenins on adult mice neural stem cell proliferation, sphere formation and differentiation. DDA and DDB were found to have potent proliferative effects in neural stem cells. Additionally, they induce neuronal outgrowth from neurospheres during in vitro cultivation. Taken together, our results demonstrate a novel role for dendrogenins A and B in neural stem cell proliferation and differentiation which further increases their likely importance to compensate for neuronal cell loss in the brain.


Assuntos
Colestanóis/farmacologia , Imidazóis/farmacologia , Células-Tronco Neurais/efeitos dos fármacos , Espermidina/análogos & derivados , Animais , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Espermidina/farmacologia
6.
Proc Natl Acad Sci U S A ; 107(30): 13520-5, 2010 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-20615952

RESUMO

The microsomal antiestrogen binding site (AEBS) is a high-affinity target for the antitumor drug tamoxifen and its cognate ligands that mediate breast cancer cell differentiation and apoptosis. The AEBS, a hetero-oligomeric complex composed of 3beta-hydroxysterol-Delta8-Delta7-isomerase (D8D7I) and 3beta-hydroxysterol-Delta7-reductase (DHCR7), binds different structural classes of ligands, including ring B oxysterols. These oxysterols are inhibitors of cholesterol-5,6-epoxide hydrolase (ChEH), a microsomal epoxide hydrolase that has yet to be molecularly identified. We hypothesized that the AEBS and ChEH might be related entities. We show that the substrates of ChEH, cholestan-5alpha,6alpha-epoxy-3beta-ol (alpha-CE) and cholestan-5beta,6beta-epoxy-3beta-ol (beta-CE), and its product, cholestane-3beta,5alpha,6beta-triol (CT), are competitive ligands of tamoxifen binding to the AEBS. Conversely, we show that each AEBS ligand is an inhibitor of ChEH activity, and that there is a positive correlation between these ligands' affinity for the AEBS and their potency to inhibit ChEH (r2=0.95; n=39; P<0.0001). The single expression of D8D7I or DHCR7 in COS-7 cells slightly increased ChEH activity (1.8- and 2.6-fold), whereas their coexpression fully reconstituted ChEH, suggesting that the formation of a dimer is required for ChEH activity. Similarly, the single knockdown of D8D7I or DHCR7 using siRNA partially inhibited ChEH in MCF-7 cells, whereas the knockdown of both D8D7I and DHCR7 abolished ChEH activity by 92%. Taken together, our findings strongly suggest that the AEBS carries out ChEH activity and establish that ChEH is a new target for drugs of clinical interest, polyunsaturated fatty acids and ring B oxysterols.


Assuntos
Epóxido Hidrolases/antagonistas & inibidores , Epóxido Hidrolases/metabolismo , Ligantes , Esteróis/farmacologia , Animais , Sítios de Ligação , Ligação Competitiva , Biocatálise/efeitos dos fármacos , Células COS , Chlorocebus aethiops , Colesterol/química , Colesterol/metabolismo , Antagonistas de Estrogênios/química , Antagonistas de Estrogênios/metabolismo , Cinética , Microssomos Hepáticos/metabolismo , Estrutura Molecular , Ensaio Radioligante , Ratos , Receptores de Estrogênio/metabolismo , Esteróis/química , Tamoxifeno/química , Tamoxifeno/metabolismo
7.
Autophagy ; 19(3): 1036-1038, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36063487

RESUMO

Normal cells secrete small extracellular vesicles (sEV), containing exosomes and/or ectosomes, which play a beneficial role in monitoring tissue integrity and immune response, whereas cancer cells constitutively secrete sEV, which contribute to inhibit the immune defenses and promote tumor progression and aggressiveness. Therefore, there is a great interest in reprograming tumor sEV functions toward normal ones. We hypothesized that this could be realized by inducing tumor cell re-differentiation with dendrogenin A (DDA), an endogenous oxysterol and a ligand of NR1 H/LXR (nuclear receptor subfamily 1 group H). At low doses, DDA induces tumor cell differentiation, tumor growth inhibition and immune cell infiltration into tumors. At high doses, DDA induces lethal macroautophagy/autophagy in tumors by increasing LC3 expression at the mRNA and protein level, through NR1H2/LXRß. In the present study, we showed that low doses of DDA re-differentiate tumor cells by interacting with NR1H2. This results in an increased formation of multivesicular bodies (MVB) in tumor cells and an enhanced secretion of LC3-II-associated exosome-enriched sEV, with immune and anticancer properties. This study highlights the original LC3-II-associated exosome secretory pathway driven by the DDA-NR1H2 complex and paves the way to the development of new therapeutic strategies against pro-tumor exosomes.


Assuntos
Exossomos , Neoplasias , Humanos , Receptores X do Fígado/metabolismo , Exossomos/metabolismo , Via Secretória , Autofagia , Neoplasias/metabolismo
8.
J Steroid Biochem Mol Biol ; 234: 106396, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37683773

RESUMO

Cholestane-3ß,5α,6ß-triol (CT) is a primary metabolite of 5,6-epoxycholesterols (5,6-EC) that is catalyzed by the cholesterol-5,6-epoxide hydrolase (ChEH). CT is a well-known biomarker for Niemann-Pick disease type C (NP-C), a progressive inherited neurodegenerative disease. On the other hand, CT is known to be metabolized by the 11ß-hydroxysteroid-dehydrogenase of type 2 (11ß-HSD2) into a tumor promoter named oncosterone that stimulates the growth of breast cancer tumors. Sulfation is a major metabolic transformation leading to the production of sulfated oxysterols. The production of cholestane-5α,6ß-diol-3ß-O-sulfate (CDS) has been reported in breast cancer cells. However, no data related to CDS biological properties have been reported so far. These studies have been hampered because sulfate esters of sterols and steroids are rapidly hydrolyzed by steroid sulfatase to give free steroids and sterols. In order to get insight into the biological properties of CDS, we report herein the synthesis and the characterization of cholestane-5α,6ß-diol-3ß-sulfonate (CDSN), a non-hydrolysable analogue of CDS. We show that CDSN is a potent inhibitor of 11ß-HSD2 that blocks oncosterone production on cell lysate. The inhibition of oncosterone biosynthesis of a whole cell assay was observed but results from the blockage by CDSN of the uptake of CT in MCF-7 cells. While CDSN inhibits MCF-7 cell proliferation, we found that it potentiates the cytotoxic activity of post-lanosterol cholesterol biosynthesis inhibitors such as tamoxifen and PBPE. This effect was associated with an increase of free sterols accumulation and the appearance of giant multilamellar bodies, a structural feature reminiscent of Type C Niemann-Pick disease cells and consistent with a possible inhibition by CDSN of NPC1. Altogether, our data showed that CDSN is biologically active and that it is a valuable tool to study the biological properties of CDS and more specifically its impact on immunity and viral infection.


Assuntos
Neoplasias da Mama , Doenças Neurodegenerativas , Humanos , Feminino , Sulfatos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2 , Colesterol/metabolismo , Esteróis
9.
J Lipid Res ; 53(4): 718-25, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22285872

RESUMO

We recently established that drugs used for the treatment and the prophylaxis of breast cancers, such as tamoxifen, were potent inhibitors of cholesterol-5,6-epoxide hydrolase (ChEH), which led to the accumulation of 5,6α-epoxy-cholesterol (5,6α-EC) and 5,6ß-epoxy-cholesterol (5,6ß-EC). This could be considered a paradox because epoxides are known as alkylating agents with putative carcinogenic properties. We report here that, as opposed to the carcinogen styrene-oxide, neither of the ECs reacted spontaneously with nucleophiles. Under catalytic conditions, 5,6ß-EC remains unreactive whereas 5,6α-EC gives cholestan-3ß,5α-diol-6ß-substituted compounds. These data showed that 5,6-ECs are stable epoxides and unreactive toward nucleophiles in the absence of a catalyst, which contrasts with the well-known reactivity of aromatic and aliphatic epoxides. These data rule out 5,6-EC acting as spontaneous alkylating agents. In addition, these data support the existence of a stereoselective metabolism of 5,6α-EC.


Assuntos
Colesterol/análogos & derivados , Compostos de Epóxi/química , Alquilação , Catálise , Colesterol/química , Cristalografia por Raios X , Meios de Cultura/química , Etanolamina/química , Guanina/química , Mercaptoetanol/química , Modelos Moleculares , Estereoisomerismo
10.
Ageing Res Rev ; 77: 101615, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35351610

RESUMO

Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.


Assuntos
Oxisteróis , Envelhecimento/metabolismo , Colesterol , Humanos , Inflamação , Estresse Oxidativo , Oxisteróis/metabolismo
11.
J Extracell Vesicles ; 11(4): e12211, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35411723

RESUMO

Tumour cells are characterized by having lost their differentiation state. They constitutively secrete small extracellular vesicles (sEV) called exosomes when they come from late endosomes. Dendrogenin A (DDA) is an endogenous tumour suppressor cholesterol-derived metabolite. It is a new class of ligand of the nuclear Liver X receptors (LXR) which regulate cholesterol homeostasis and immunity. We hypothesized that DDA, which induces tumour cell differentiation, inhibition of tumour growth and immune cell infiltration into tumours, could functionally modify sEV secreted by tumour cells. Here, we have shown that DDA differentiates tumour cells by acting on the LXRß. This results in an increased production of sEV (DDA-sEV) which includes exosomes. The DDA-sEV secreted from DDA-treated cells were characterized for their content and activity in comparison to sEV secreted from control cells (C-sEV). DDA-sEV were enriched, relatively to C-sEV, in several proteins and lipids such as differentiation antigens, "eat-me" signals, lipidated LC3 and the endosomal phospholipid bis(monoacylglycero)phosphate, which stimulates dendritic cell maturation and a Th1 T lymphocyte polarization. Moreover, DDA-sEV inhibited the growth of tumours implanted into immunocompetent mice compared to control conditions. This study reveals a pharmacological control through a nuclear receptor of exosome-enriched tumour sEV secretion, composition and immune function. Targeting the LXR may be a novel way to reprogram tumour cells and sEV to stimulate immunity against cancer.


Assuntos
Exossomos , Neoplasias , Animais , Colestanóis , Colesterol/metabolismo , Exossomos/metabolismo , Imidazóis , Receptores X do Fígado/metabolismo , Camundongos , Neoplasias/tratamento farmacológico
12.
Br J Pharmacol ; 178(16): 3248-3260, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32696532

RESUMO

Metabolic pathways have emerged as cornerstones in carcinogenic deregulation providing new therapeutic strategies for cancer management. Recently, a new branch of cholesterol metabolism has been discovered involving the biochemical transformation of 5,6-epoxycholesterols (5,6-ECs). The 5,6-ECs are metabolized in breast cancers to the tumour promoter oncosterone whereas, in normal breast tissue, they are metabolized to the tumour suppressor metabolite, dendrogenin A (DDA). Blocking the mitogenic and invasive potential of oncosterone will present new opportunities for breast cancer treatment. The reactivation of DDA biosynthesis, or its use as a drug, represents promising therapeutic approaches such as DDA-deficiency complementation, activation of breast cancer cell re-differentiation and breast cancer chemoprevention. This review presents current knowledge of the 5,6-EC metabolic pathway in breast cancer, focusing on the 5,6-EC metabolic enzymes ChEH and HSD11B2 and on 5,6-EC metabolite targets, the oxysterol receptor (LXRß) and the glucocorticoid receptor. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Proliferação de Células , Colesterol/análogos & derivados , Feminino , Humanos , Redes e Vias Metabólicas
13.
J Lipid Res ; 51(8): 2105-20, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20424270

RESUMO

Exosomes are bioactive vesicles released from multivesicular bodies (MVB) by intact cells and participate in intercellular signaling. We investigated the presence of lipid-related proteins and bioactive lipids in RBL-2H3 exosomes. Besides a phospholipid scramblase and a fatty acid binding protein, the exosomes contained the whole set of phospholipases (A2, C, and D) together with interacting proteins such as aldolase A and Hsp 70. They also contained the phospholipase D (PLD) / phosphatidate phosphatase 1 (PAP1) pathway leading to the formation of diglycerides. RBL-2H3 exosomes also carried members of the three phospholipase A2 classes: the calcium-dependent cPLA(2)-IVA, the calcium-independent iPLA(2)-VIA, and the secreted sPLA(2)-IIA and V. Remarkably, almost all members of the Ras GTPase superfamily were present, and incubation of exosomes with GTPgammaS triggered activation of phospholipase A(2) (PLA(2))and PLD(2). A large panel of free fatty acids, including arachidonic acid (AA) and derivatives such as prostaglandin E(2) (PGE(2)) and 15-deoxy-Delta(12,14)-prostaglandinJ(2) (15-d PGJ(2)), were detected. We observed that the exosomes were internalized by resting and activated RBL cells and that they accumulated in an endosomal compartment. Endosomal concentrations were in the micromolar range for prostaglandins; i.e., concentrations able to trigger prostaglandin-dependent biological responses. Therefore exosomes are carriers of GTP-activatable phospholipases and lipid mediators from cell to cell.


Assuntos
Exossomos/metabolismo , Fosfolipases/metabolismo , Prostaglandinas/metabolismo , Transporte Biológico , Linhagem Celular , Dinoprostona/metabolismo , Endossomos/metabolismo , Ativação Enzimática/efeitos dos fármacos , Exossomos/efeitos dos fármacos , Guanosina Trifosfato/farmacologia , Humanos , Lipólise , Proteínas Associadas a Pancreatite , Fosfatidato Fosfatase/metabolismo , Fosfolipase D/metabolismo , Fosfolipases A2/metabolismo , Prostaglandina D2/análogos & derivados , Prostaglandina D2/metabolismo , Proteoma/metabolismo
14.
Mol Pharmacol ; 78(5): 827-36, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20702762

RESUMO

Auraptene is a prenyloxycoumarin from Citrus species with chemopreventive properties against colitis-related colon and breast cancers through a yet-undefined mechanism. To decipher its mechanism of action, we used a ligand-structure based approach. We established that auraptene fits with a pharmacophore involved in both the inhibition of acyl-CoA:cholesterol acyl transferase (ACAT) and the modulation of estrogen receptors (ERs). We confirmed experimentally that auraptene inhibits ACAT and binds to ERs in a concentration-dependent manner and that it inhibited ACAT in rat liver microsomes and in intact cancer cells of murine and human origins, with an IC(50) value in the micromolar range. Auraptene bound to ERs with affinities of 7.8 µM for ERα and 7.9 µM for ERß, stabilized ERs, and modulated their transcriptional activity via an ER-dependent reporter gene and endogenous genes. We further established that these effects correlated well with the control of growth and invasiveness of tumor cells. Our data shed light on the molecular mechanism underlying the anticancer and chemopreventive effects of auraptene.


Assuntos
Anticarcinógenos/farmacologia , Cumarínicos/farmacologia , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/metabolismo , Esterol O-Aciltransferase/antagonistas & inibidores , Animais , Sítios de Ligação , Ligação Competitiva , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Epóxido Hidrolases/antagonistas & inibidores , Antagonistas de Estrogênios/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Técnicas In Vitro , Luciferases/biossíntese , Luciferases/genética , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/enzimologia , Modelos Moleculares , Invasividade Neoplásica , Ensaio Radioligante , Ratos , Transcrição Gênica/efeitos dos fármacos
15.
Cancers (Basel) ; 12(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053669

RESUMO

Dendrogenin A (DDA), a mammalian cholesterol metabolite with tumor suppressor properties, has recently been shown to exhibit strong anti-leukemic activity in acute myeloid leukemia (AML) cells by triggering lethal autophagy. Here, we demonstrated that DDA synergistically enhanced the toxicity of anthracyclines in AML cells but not in normal hematopoietic cells. Combination index of DDA treatment with either daunorubicin or idarubicin indicated a strong synergism in KG1a, KG1 and MV4-11 cell lines. This was confirmed in vivo using immunodeficient mice engrafted with MOLM-14 cells as well as in a panel of 20 genetically diverse AML patient samples. This effect was dependent on Liver X Receptor ß, a major target of DDA. Furthermore, DDA plus idarubicin strongly increased p53BP1 expression and the number of DNA strand breaks in alkaline comet assays as compared to idarubicin alone, whereas DDA alone was non-genotoxic. Mechanistically, DDA induced JNK phosphorylation and the inhibition of AKT phosphorylation, thereby maximizing DNA damage induced by idarubicin and decreasing DNA repair. This activated autophagic cell death machinery in AML cells. Overall, this study shows that the combination of DDA and idarubicin is highly promising and supports clinical trials of dendrogenin A in AML patients.

16.
J Lipid Res ; 50(11): 2203-11, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19502590

RESUMO

Several studies indicate that cholesterol esterification is deregulated in cancers. The present study aimed to characterize the role of cholesterol esterification in proliferation and invasion of two tumor cells expressing an activated cholecystokinin 2 receptor (CCK2R). A significant increase in cholesterol esterification and activity of Acyl-CoA:cholesterol acyltransferase (ACAT) was measured in tumor cells expressing a constitutively activated oncogenic mutant of the CCK2R (CCK2R-E151A cells) compared with nontumor cells expressing the wild-type CCK2R (CCK2R-WT cells). Inhibition of cholesteryl ester formation and ACAT activity by Sah58-035, an inhibitor of ACAT, decreased by 34% and 73% CCK2R-E151A cell growth and invasion. Sustained activation of CCK2R-WT cells by gastrin increased cholesteryl ester production while addition of cholesteryl oleate to the culture medium of CCK2R-WT cells increased cell proliferation and invasion to a level close to that of CCK2R-E151A cells. In U87 glioma cells, a model of autocrine growth stimulation of the CCK2R, inhibition of cholesterol esterification and ACAT activity by Sah58-035 and two selective antagonists of the CCK2R significantly reduced cell proliferation and invasion. In both models, cholesteryl ester formation was found dependent on protein kinase zeta/ extracellular signal-related kinase 1/2 (PKCzeta/ERK1/2) activation. These results show that signaling through ACAT/cholesterol esterification is a novel pathway for the CCK2R that contributes to tumor cell proliferation and invasion.


Assuntos
Proliferação de Células , Colesterol/metabolismo , Receptor de Colecistocinina B/metabolismo , Transdução de Sinais , Animais , Benzodiazepinas/farmacologia , Western Blotting , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Colesterol/química , Ésteres do Colesterol/farmacologia , Esterificação , Antagonistas de Hormônios/farmacologia , Humanos , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Mutação , Células NIH 3T3 , Invasividade Neoplásica , Proteína Quinase C/metabolismo , Receptor de Colecistocinina B/antagonistas & inibidores , Receptor de Colecistocinina B/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esterol O-Aciltransferase/metabolismo , Transfecção
17.
Mol Cancer Ther ; 7(12): 3707-18, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19074846

RESUMO

The microsomal antiestrogen-binding site (AEBS) is a high-affinity membranous binding site for the antitumor drug tamoxifen that selectively binds diphenylmethane derivatives of tamoxifen such as PBPE and mediates their antiproliferative properties. The AEBS is a hetero-oligomeric complex consisting of 3beta-hydroxysterol-Delta8-Delta7-isomerase and 3beta-hydroxysterol-Delta7-reductase. High-affinity AEBS ligands inhibit these enzymes leading to the massive intracellular accumulation of zymostenol or 7-dehydrocholesterol (DHC), thus linking AEBS binding to the modulation of cholesterol metabolism and growth control. The aim of the present study was to gain more insight into the control of breast cancer cell growth by AEBS ligands. We report that PBPE and tamoxifen treatment induced differentiation in human breast adenocarcinoma cells MCF-7 as indicated by the arrest of cells in the G0-G1 phase of the cell cycle, the increase in the cell volume, the accumulation and secretion of lipids, and a milk fat globule protein found in milk. These effects were observed with other AEBS ligands and with zymostenol and DHC. Vitamin E abrogates the induction of differentiation and reverses the control of cell growth produced by AEBS ligands, zymostenol, and DHC, showing the importance of the oxidative processes in this effect. AEBS ligands induced differentiation in estrogen receptor-negative mammary tumor cell lines SKBr-3 and MDA-MB-468 but with a lower efficiency than observed with MCF-7. Together, these data show that AEBS ligands exert an antiproliferative effect on mammary cancer cells by inducing cell differentiation and growth arrest and highlight the importance of cholesterol metabolism in these effects.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Colesterol/metabolismo , Moduladores de Receptor Estrogênico/farmacologia , Microssomos/metabolismo , Sítios de Ligação , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Citometria de Fluxo , Humanos , Ligantes , Lipídeos/química , Proteínas do Leite/química , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Fatores de Tempo
18.
Med Hypotheses ; 122: 62-67, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30593426

RESUMO

Despite intensive research, no satisfactory therapeutic options have been found for aging and age-related diseases. The British scientist Leslie Orgel stated that evolution is cleverer than we are. This assumption seems correct considering that some species are naturally able to resist the age-related diseases that remain unsolved by our modern medicine. Indeed, bowhead whales can live for more than two hundred years and are suspected to possess efficient antitumor mechanisms. Naked mole-rats are exceptionally long-lived compared to similar-sized mammals and are protected from senescence and age-related diseases. Consequently, the characterization of protective molecular mechanisms in long-lived species (i.e. bowhead whale, naked mole-rat, microbat) could be of great interest for therapeutic applications in human. Cellular stress response is considered to be an anti-aging process dedicated to the prevention of damage accumulation and the maintenance of homeostasis. Interestingly, cellular stress response in plants and animals involves the production of health-promoting metabolites such as resveratrol, nicotinamide adenine dinucleotide and spermidine. Do anti-aging metabolites formed during stress exposure differ between human and extreme longevity species in terms of their nature, their quantity or their production? These questions remain unsolved and deserve to be considered. Indeed, the mimicking of anti-aging strategies selected throughout evolution in long-lived species could be of high therapeutic value for humans. This paper suggests that metabolomic studies on extreme longevity species cells exposed to mild stressors may lead to the characterization of health-promoting metabolites. If confirmed, this would provide new avenues of research for the development of innovative anti-aging strategies for humans.


Assuntos
Envelhecimento , Longevidade , Estresse Fisiológico , Animais , Homeostase , Humanos , Metabolômica , Camundongos , Modelos Teóricos , Ratos-Toupeira , NAD/metabolismo , Neoplasias/metabolismo , Estresse Oxidativo , Ratos , Resveratrol/metabolismo , Especificidade da Espécie , Espermidina/metabolismo
19.
J Steroid Biochem Mol Biol ; 194: 105447, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31415823

RESUMO

Dendrogenin A (DDA) is a newly-discovered steroidal alkaloid, which remains to date the first ever found in mammals. DDA is a cholesterol metabolites that induces cancer cell differentiation and death in vitro and in vivo, and thus behave like a tumor suppressor metabolite. Preliminary studies performed on 10 patients with estrogen receptor positive breast cancers (ER(+)BC) showed a strong decrease in DDA levels between normal matched tissue and tumors. This suggests that a deregulation on DDA metabolism is associated with breast carcinogenesis. To further investigate DDA metabolism on large cohorts of patients we have developed an ultra-high performance liquid chromatography-tandem mass spectrometry (UPLC-MS) procedure for the quantification of DDA in liquid and in solid tissues. This method enabled the identification of DDA analogues such as its geometric isomer C17 and dendrogenin B (C26) in human samples showing that other 5,6α-epoxycholesterol conjugation products with biogenic amines exist as endogenous metabolites . We report here the first complete method of quantification of DDA in liquid and solid tissues using hydrophilic interaction liquid chromatography (HILIC). Two different methods of extraction using either a Bligh and Dyer organic extraction or protein precipitation were successfully applied to quantify DDA in solid and liquid tissues. The protein precipitation method was the fastest. The fact that this method is automatable opens up possibilities to study DDA metabolism in large cohorts of patients.


Assuntos
Colestanóis/análise , Imidazóis/análise , Mama/metabolismo , Neoplasias da Mama/metabolismo , Colestanóis/metabolismo , Cromatografia Líquida/métodos , Feminino , Humanos , Imidazóis/metabolismo
20.
J Steroid Biochem Mol Biol ; 192: 105390, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31170473

RESUMO

Dendrogenin A (DDA) is a tumor suppressor mammalian cholesterol-derived metabolite and a new class of ligand of the Liver X receptor (LXR), which displays tumor cell differentiation. In human MCF7 breast adenocarcinoma cells, DDA-induced cell differentiation was associated with an increased accumulation of neutral lipids and proteins found in milk indicating that DDA re-activates some functions of lactating cells. Active iodide transport occurs in the normal lactating mammary cells through the sodium/iodide symporter (NIS) and iodide (I) is secreted into milk to be used by the nursing newborn for thyroid hormones biosynthesis. In the present study, we assessed whether DDA may induce other characteristic of lactating cells such as NIS expression and iodine uptake in MCF7 breast cancer cells and extended this study to the papillary B-CPAP and undifferentiated anaplastic 8505c thyroid cancer cells. Moreover, we evaluated DDA impact on the expression of thyroid specific proteins involved in thyroid hormone biogenesis. We report here that DDA induces NIS expression in MCF7 cells and significantly increases the uptake of 131-I by acting through the LXR. In addition, DDA induces phenotypic, molecular and functional characteristics of redifferentiation in the two human thyroid carcinoma cell lines and the uptake of 131-I in the undifferentiated 8505c cells was associated with a strong expression of all the specific proteins involved in thyroid hormone biosynthesis, TSH receptor, thyroperoxidase and thyroglobulin. 131-I incorporation in the 8505c cells was stimulated by DDA as well as by the synthetic LXR ligand, GW3965. Together these data show that the re-differentiation of breast and thyroid cancer cells by DDA, is associated with the recovery of functional NIS expression and involves an LXR-dependent mechanism. These results open new avenues of research for the diagnosis of thyroid cancers as well as the development of new therapeutic approaches for radioiodine refractory thyroid cancers.


Assuntos
Adenocarcinoma/tratamento farmacológico , Neoplasias da Mama/tratamento farmacológico , Colestanóis/farmacologia , Imidazóis/farmacologia , Radioisótopos do Iodo/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/farmacologia , Apoptose , Autoantígenos/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Ciclo Celular , Proliferação de Células , Feminino , Humanos , Iodeto Peroxidase/metabolismo , Proteínas de Ligação ao Ferro/metabolismo , Camundongos , Camundongos Nus , Receptores da Tireotropina/metabolismo , Simportadores/metabolismo , Tireoglobulina/metabolismo , Neoplasias da Glândula Tireoide/metabolismo , Neoplasias da Glândula Tireoide/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA