Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell Neurosci ; 118: 103694, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954382

RESUMO

Rupture and stretching of spinal roots are common incidents that take place in high-energy accidents. The proximal axotomy of motoneurons by crushing of ventral roots is directly related to the degeneration of half of the lesioned population within the first two weeks. Moreover, only a small percentage of surviving motoneurons can successfully achieve regeneration after such a proximal lesion, and new treatments are necessary to improve this scenario. In this sense, mesenchymal stem cells (MSC) are of great interest once they secrete a broad spectrum of bioactive molecules that are immunomodulatory and can restore the environment after a lesion. The present work aimed at studying the effects of human mesenchymal stem cells (hMSC) therapy after ventral root crush (VRC) in mice. We evaluated motoneuron survival, glial reaction, and synapse preservation at the ventral horn. For this purpose, C57BL/6 J were submitted to a crush procedure of L4 to L6 ventral roots and treated with a single intravenous injection of adipose-derived hMSC. Evaluation of the results was carried out at 7, 14, and 28 days after injury. Analysis of motoneuron survival and astrogliosis showed that hMSC treatment resulted in higher motoneuron preservation (motoneuron survival ipsi/contralateral ratio: VRC group = 53%, VRC + hMSC group = 66%; p < 0.01), combined with reduction of astrogliosis (ipsi/contralateral GFAP immunolabeling: VRC group = 470%, VRC + hMSC group = 250%; p < 0.001). The morphological classification and Sholl analysis of microglial activation revealed that hMSC treatment reduced type V and increased type II profiles, indicating an enhancement of surveying over activated microglial cells. The glial reactivity modulation directly influenced synaptic inputs in apposition to axotomized motoneurons. In the hMSC-treated group, synaptic maintenance was increased (ipsi/contralateral synaptophysin immunolabeling: VRC group = 53%, VRC + hMSC group = 64%; p < 0.05). Overall, the present data show that intravenous injection of hMSC has neuroprotective and anti-inflammatory effects, decreasing reactive astrogliosis, and microglial reaction. Also, such cell therapy results in motoneuron preservation, combined with significant maintenance of spinal cord circuits, in particular those related to the ventral horn.


Assuntos
Gliose , Células-Tronco Mesenquimais , Animais , Gliose/terapia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Neuroproteção , Medula Espinal , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia
2.
Ann Neurol ; 90(2): 239-252, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34048612

RESUMO

OBJECTIVE: Protein misfolding plays a central role not only in amyotrophic lateral sclerosis (ALS), but also in other conditions, such as frontotemporal dementia (FTD), inclusion body myopathy (hIBM) or Paget's disease of bone. The concept of multisystem proteinopathies (MSP) was created to account for those rare families that segregate at least 2 out of these 4 conditions in the same pedigree. The calcium-dependent phospholipid-binding protein annexin A11 was recently associated to ALS in European pedigrees. Herein, we describe in detail 3 Brazilian families presenting hIBM (isolated or in combination with ALS/FTD) caused by the novel p.D40Y change in the gene encoding annexin A11 (ANXA11). METHODS: We collected clinical, genetic, pathological and skeletal muscle imaging from 11 affected subjects. Neuroimaging was also obtained from 8 patients and 8 matched controls. RESULTS: Clinico-radiological phenotype of this novel hIBM reveals a slowly progressive predominant limb-girdle syndrome, but with frequent axial (ptosis/dropped head) and distal (medial gastrocnemius) involvement as well. Muscle pathology identified numerous rimmed vacuoles with positive annexin A11, TDP-43 and p62 inclusions, but no inflammation. Central nervous system was also involved: two patients had FTD, but diffusion tensor imaging uncovered multiple areas of cerebral white matter damage in the whole group (including the corticospinal tracts and frontal subcortical regions). INTERPRETATION: These findings expand the phenotypic spectrum related to ANXA11. This gene should be considered the cause of a novel multisystem proteinopathy (MSP type 6), rather than just ALS. ANN NEUROL 2021;90:239-252.


Assuntos
Anexinas/genética , Variação Genética/genética , Mutação de Sentido Incorreto/genética , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Idoso , Sequência de Aminoácidos , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Linhagem , Sequenciamento do Exoma/métodos
3.
Mol Biol Rep ; 48(2): 1233-1241, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33475929

RESUMO

The literature has shown the beneficial effects of microcurrent (MC) therapy on tissue repair. We investigated if the application of MC at 10 µA/90 s could modulate the expression of remodeling genes transforming growth factor beta (Tgfb), connective tissue growth factor (Ctgf), insulin-like growth factor 1 (Igf1), tenascin C (Tnc), Fibronectin (Fn1), Scleraxis (Scx), Fibromodulin (Fmod) and tenomodulin in NIH/3T3 fibroblasts in a wound healing assay. The cell migration was analyzed between days 0 and 4 in both fibroblasts (F) and fibroblasts + MC (F+MC) groups. On the 4th day, cell viability and gene expression were also analyzed after daily MC application. Higher expression of Ctgf and lower expression of Tnc and Fmod, respectively, were observed in the F+MC group in relation to F group (p < 0.05), and no difference was observed between the groups for the genes Tgfb, Fn1 and Scx. In cell migration, a higher number of cells in the scratch region was observed in group F+MC (p < 0.05) compared to group F on the 4th day, and the cell viability assay showed no difference between the groups. In conclusion, MC therapy at an intensity/time of 10 µA/90 s with 4 daily applications did not affect cell viability, stimulated fibroblasts migration with the involvement of Ctgf, and reduced the Tnc and Fmod expression.


Assuntos
Fator de Crescimento do Tecido Conjuntivo/genética , Terapia por Estimulação Elétrica , Fibromodulina/genética , Tenascina/genética , Cicatrização/efeitos da radiação , Animais , Movimento Celular/efeitos da radiação , Fibronectinas/genética , Regulação da Expressão Gênica/efeitos da radiação , Humanos , Fator de Crescimento Insulin-Like I/genética , Camundongos , Células NIH 3T3 , Fator de Crescimento Transformador beta1/genética , Cicatrização/genética
4.
J Neuroinflammation ; 16(1): 218, 2019 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-31727149

RESUMO

BACKGROUND: The development of new therapeutic strategies to treat amyotrophic lateral sclerosis (ALS) is of utmost importance. The use of cyclic nitroxides such as tempol may provide neuroprotection and improve lifespan. We investigated whether tempol (50 mg/kg) presents therapeutic potential in SOD1G93A transgenic mice. METHODS: Tempol treatment began at the asymptomatic phase of the disease (10th week) and was administered every other day until week 14, after which it was administered twice a week until the final stage of the disease. The animals were sacrificed at week 14 (initial stage of symptoms-ISS) and at the end stage (ES) of the disease. The lumbar spinal cord of the animals was dissected and processed for use in the following techniques: Nissl staining to evaluate neuronal survival; immunohistochemistry to evaluate astrogliosis and microgliosis (ISS and ES); qRT-PCR to evaluate the expression of neurotrophic factors and pro-inflammatory cytokines (ISS); and transmission electron microscopy to evaluate the alpha-motoneurons (ES). Behavioral analyses considering the survival of animals, bodyweight loss, and Rotarod motor performance test started on week 10 and were performed every 3 days until the end-stage of the disease. RESULTS: The results revealed that treatment with tempol promoted greater neuronal survival (23%) at ISS compared to untreated animals, which was maintained until ES. The intense reactivity of astrocytes and microglia observed in vehicle animals was reduced in the lumbar spinal cords of the animals treated with tempol. In addition, the groups treated with tempol showed reduced expression of proinflammatory cytokines (IL1ß and TNFα) and a three-fold decrease in the expression of TGFß1 at ISS compared with the group treated with vehicle. CONCLUSIONS: Altogether, our results indicate that treatment with tempol has beneficial effects, delaying the onset of the disease by enhancing neuronal survival and decreasing glial cell reactivity during ALS progression in SOD1G93A mice.


Assuntos
Esclerose Lateral Amiotrófica/fisiopatologia , Óxidos N-Cíclicos/uso terapêutico , Inflamação/tratamento farmacológico , Destreza Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Medula Espinal/efeitos dos fármacos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Sobrevivência Celular/efeitos dos fármacos , Óxidos N-Cíclicos/farmacologia , Modelos Animais de Doenças , Feminino , Inflamação/metabolismo , Inflamação/patologia , Interleucina-1beta/metabolismo , Masculino , Camundongos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Destreza Motora/fisiologia , Fármacos Neuroprotetores/farmacologia , Teste de Desempenho do Rota-Rod , Marcadores de Spin , Medula Espinal/metabolismo , Medula Espinal/patologia , Superóxido Dismutase-1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
5.
Eur J Neurosci ; 48(5): 2152-2164, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30099786

RESUMO

Peripheral nerve injuries severely impair patients' quality of life as full recovery is seldom achieved. Upon axonal disruption, the distal nerve stump undergoes fragmentation, and myelin breaks down; the subsequent regeneration progression is dependent on cell debris removal. In addition to tissue clearance, macrophages release angiogenic and neurotrophic factors that contribute to axon growth. Based on the importance of macrophages for nerve regeneration, especially during the initial response to injury, we treated mice with granulocyte-macrophage colony-stimulating factor (GM-CSF) at various intervals after sciatic nerve crushing. Sciatic nerves were histologically analyzed at different time intervals after injury for the presence of macrophages and indicators of regeneration. Functional recovery was followed by an automated walking track test. We found that GM-CSF potentiated early axon growth, as indicated by the enhanced expression of growth-associated protein at 7 days postinjury. Inducible nitric oxide synthase expression increased at the beginning and at the end of the regenerative process, suggesting that nitric oxide is involved in axon growth and pruning. As expected, GM-CSF treatment stimulated macrophage infiltration, which increased at 7 and 14 days; however, it did not improve myelin clearance. Instead, GM-CSF stimulated early brain-derived neurotrophic factor (BDNF) production, which peaked at 7 days. Locomotor recovery pattern was not improved by GM-CSF treatment. The present results suggest that GM-CSF may have beneficial effects on early axonal regeneration.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Macrófagos/efeitos dos fármacos , Regeneração Nervosa/efeitos dos fármacos , Nervo Isquiático/efeitos dos fármacos , Animais , Axônios/efeitos dos fármacos , Axônios/metabolismo , Modelos Animais de Doenças , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Locomoção/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Bainha de Mielina/metabolismo , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Traumatismos dos Nervos Periféricos/metabolismo , Recuperação de Função Fisiológica/efeitos dos fármacos , Nervo Isquiático/lesões , Degeneração Walleriana/tratamento farmacológico , Degeneração Walleriana/metabolismo
6.
Immunology ; 146(3): 486-95, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26302057

RESUMO

Paracoccidioidomycosis is a systemic infection prevalent in Latin American countries. Disease develops after inhalation of Paracoccidioides brasiliensis conidia followed by an improper immune activation by the host leucocytes. Dendritic cells (DCs) are antigen-presenting cells with the unique ability to direct the adaptive immune response by the time of activation of naive T cells. This study was conducted to test whether extracts of P. brasiliensis would induce maturation of DCs. We found that DCs treated with extracts acquired an inflammatory phenotype and upon adoptive transfer conferred protection to infection. Interestingly, interleukin-10 production by CD8(+) T cells was ablated following DC transfer. Further analyses showed that lymphocytes from infected mice were high producers of interleukin-10, with CD8(+) T cells being the main source. Blockage of cross-presentation to CD8(+) T cells by modulated DCs abolished the protective effect of adoptive transfer. Collectively, our data show that adoptive transfer of P. brasiliensis-modulated DCs is an interesting approach for the control of infection in paracoccidioidomycosis.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Interleucina-10/biossíntese , Paracoccidioides/imunologia , Paracoccidioidomicose/imunologia , Paracoccidioidomicose/prevenção & controle , Transferência Adotiva , Animais , Antígenos de Fungos/farmacologia , Diferenciação Celular/imunologia , Apresentação Cruzada , Citocinas/biossíntese , Células Dendríticas/citologia , Células Dendríticas/microbiologia , Feminino , Vacinas Fúngicas/imunologia , Vacinas Fúngicas/farmacologia , Mediadores da Inflamação/metabolismo , Interleucina-10/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout
7.
Immunol Cell Biol ; 92(2): 124-32, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24217811

RESUMO

Chloroquine (CQ), an antimalarial drug, has been shown to modulate the immune system and reduce the severity of experimental autoimmune encephalomyelitis (EAE). The mechanisms of disease suppression are dependent on regulatory T cell induction, although Tregs-independent mechanisms exist. We aimed to evaluate whether CQ is capable to modulate bone marrow-derived dendritic cells (DCs) both phenotypically and functionally as well as whether transfer of CQ-modulated DCs reduces EAE course. Our results show that CQ-treated DCs presented altered ultrastructure morphology and lower expression of molecules involved in antigen presentation. Consequently, T cell proliferation was diminished in coculture experiments. When transferred into EAE mice, DC-CQ was able to reduce the clinical manifestation of the disease through the modulation of the immune response against neuroantigens. The data presented herein indicate that chloroquine-mediated modulation of the immune system is achieved by a direct effect on DCs and that DC-CQ adoptive transfer may be a promising approach for avoiding drug toxicity.


Assuntos
Transferência Adotiva , Apresentação de Antígeno/efeitos dos fármacos , Antirreumáticos/farmacologia , Cloroquina/farmacologia , Células Dendríticas , Encefalomielite Autoimune Experimental/terapia , Animais , Proliferação de Células/efeitos dos fármacos , Células Dendríticas/imunologia , Células Dendríticas/transplante , Encefalomielite Autoimune Experimental/imunologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Camundongos , Linfócitos T/imunologia , Linfócitos T/patologia
8.
Lasers Med Sci ; 29(2): 805-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23982719

RESUMO

In the last decades, the tendon injuries have increased substantially. Previous results suggested that low-level laser treatment (LLLT) promotes synthesis of extracellular matrix and improves the functional properties of the tendon. The aim of this study was to evaluate the effects of different protocols of LLLT on partially tenotomized tendons. Adult male rats were divided into the following: G1-intact, G2-injured, G3-injured + LLLT (4 J/cm(2) continuous), G4-injured + LLLT (4 J/cm(2) at 20 Hz). G2, G3, and G4 were euthanized 8 days after injury. G5-injured, G6-injured + LLLT (4 J/cm(2) continuous), and G7-injured + LLL (4 J/cm(2) at 20 Hz until the seventh day and 2 kHz from 8 to 14 days). G5, G6, and G7 were euthanized on the 15th day. Glycosaminoglycan (GAG) level was quantified by dimethylmethylene blue method and analyzed on agarose gel. Toluidine blue (TB) stain was used to observe metachromasy. CatWalk system was used to evaluate gait recovery. Collagen organization was analyzed by polarization microscopy. The GAG level increased in all transected groups, except G5. In G6 and G7, there was a significant increase in GAG in relation to G5. In G3 and G4, the presence of dermatan sulfate band was more prominent than G2. TB stains showed intense metachromasy in the treated groups. Birefringence analysis showed improvement in collagen organization in G7. The gait was significantly improved in G7. In conclusion, pulsed LLLT leads to increased organization of collagen bundles and improved gait recovery.


Assuntos
Terapia com Luz de Baixa Intensidade/métodos , Traumatismos dos Tendões/radioterapia , Tendão do Calcâneo/lesões , Animais , Glicosaminoglicanos/metabolismo , Lasers , Terapia com Luz de Baixa Intensidade/instrumentação , Masculino , Microscopia de Polarização , Ratos Wistar , Traumatismos dos Tendões/metabolismo , Traumatismos dos Tendões/fisiopatologia , Cicatrização/efeitos da radiação
9.
Artigo em Inglês | MEDLINE | ID: mdl-38770186

RESUMO

Background: Spinal ventral root injuries generate significant motoneuron degeneration, which hinders full functional recovery. The poor prognosis of functional recovery can be attributed to the use or combination of different therapeutic approaches. Several molecules have been screened as potential treatments in combination with surgical reimplantation of the avulsed roots, the gold standard approach for such injuries. Among the studied molecules, human natural killer-1 (HNK-1) stands out as it is related to the stimulation of motor axon outgrowth. Therefore, we aimed to comparatively investigate the effects of local administration of an HNK-1 mimetic peptide (mp-HNK-1) and systemic treatment with ursolic acid (UA), another HNK-1 mimetic, after ventral root avulsion and reimplantation with heterologous fibrin biopolymer (HFB). Methods: Female mice of the isogenic strain C57BL/6JUnib were divided into five experimental groups: Avulsion, Reimplantation, mp-HNK-1 (in situ), and UA (systemic treatment). Mice were evaluated 2 and 12 weeks after surgery. Functional assessment was performed every four days using the Catwalk platform. Neuronal survival was analyzed by cytochemistry, and glial reactions and synaptic coverage were evaluated by immunofluorescence. Results: Treatment with UA elicited long-term neuroprotection, accompanied by a decrease in microglial reactions, and reactive astrogliosis. The neuroprotective effects of UA were preceded by increased glutamatergic and GABAergic inputs in the ventral spinal cord two weeks after injury. However, a single application of mp-HNK-1 had no significant effects. Functional analysis showed that UA treatment led to an improvement in motor and sensory recovery. Conclusion: Overall, the results indicate that UA is neuroprotective, acting on glial cells and synaptic maintenance, and the combination of these findings led to a better functional recovery.

10.
Polymers (Basel) ; 15(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37571065

RESUMO

Spinal cord injury causes critical loss in motor and sensory function. Ventral root avulsion is an experimental model in which there is the tearing of the ventral (motor) roots from the surface of the spinal cord, resulting in several morphological changes, including motoneuron degeneration and local spinal cord circuitry rearrangements. Therefore, our goal was to test the combination of surgical repair of lesioned roots with a fibrin biopolymer and the pharmacological treatment with dimethyl fumarate, an immunomodulatory drug. Thus, adult female Lewis rats were subjected to unilateral ventral root avulsion of L4-L6 roots followed by repair with fibrin biopolymer and daily treatment with dimethyl fumarate (15 mg/Kg; gavage) for 4 weeks, the survival time post-surgery being 12 weeks; n = 5/group/technique. Treatments were evaluated by immunofluorescence and transmission electron microscopy, morphometry of the sciatic nerve, and motor function recovery. Our results indicate that the combination between fibrin biopolymer and dimethyl fumarate is neuroprotective since most of the synapses apposed to alfa motoneurons were preserved in clusters. Also, nerve sprouting occurred, and the restoration of the 'g' ratio and large axon diameter was achieved with the combined treatment. Such parameters were combined with up to 50% of gait recovery, observed by the walking track test. Altogether, our results indicate that combining root restoration with fibrin biopolymer and dimethyl fumarate administration can enhance motoneuron survival and regeneration after proximal lesions.

11.
Synapse ; 66(2): 128-41, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21953623

RESUMO

G-CSF is a glycoprotein commonly used to treat neutropenia. Recent studies have shown that the G-CSF receptor (G-CSF-R) is expressed by neurons in the central nervous system (CNS), and neuroprotective effects of G-CSF have been observed. In this study, the influence of G-CSF treatment on the glial reactivity and synaptic plasticity of spinal motoneurons in rats subjected to ventral root avulsion (VRA) was investigated. Lewis rats (7 weeks old) were subjected to unilateral VRA and divided into two groups: G-CSF and placebo treated. The drug treated animals were injected subcutaneously with 200 µg/kg/day of G-CSF for 5 days post lesion. The placebo group received saline buffer. After 2 weeks, both groups were sacrificed and their lumbar intumescences processed for transmission electron microscopy (TEM), motoneuron counting, and immunohistochemistry with antibodies against GFAP, Iba-1, and synaptophysin. Furthermore, in vitro analysis was carried out, using newborn cortical derived astrocytes. The results indicated increased neuronal survival in the G-CSF treated group coupled with synaptic preservation. TEM analyses revealed an improved preservation of the synaptic covering in treated animals. Additionally, the drug treated group showed an increase in astroglial reactivity both in vivo and in vitro. The astrocytes also presented an increased cell proliferation rate when compared with the controls after 3 days of culturing. In conclusion, the present results suggest that G-CSF has an influence on the stability of presynaptic terminals in the spinal cord as well as on the astroglial reaction, indicating a possible neuroprotective action.


Assuntos
Fator Estimulador de Colônias de Granulócitos/fisiologia , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Rizotomia , Raízes Nervosas Espinhais/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Astrócitos/fisiologia , Modelos Animais de Doenças , Feminino , Neurônios Motores/patologia , Neurônios Motores/fisiologia , Terminações Pré-Sinápticas/efeitos dos fármacos , Terminações Pré-Sinápticas/patologia , Terminações Pré-Sinápticas/fisiologia , Cultura Primária de Células , Ratos , Ratos Endogâmicos Lew , Rizotomia/efeitos adversos , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/patologia , Raízes Nervosas Espinhais/fisiologia
12.
Anesth Analg ; 115(5): 1234-41, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22822189

RESUMO

BACKGROUND: Bupivacaine (BVC) and ropivacaine (RVC) are local anesthetics widely used in surgical procedures. In previous studies, inclusion complexes of BVC or RVC in hydroxypropyl-ß-cyclodextrin (HP-ß-CD) increased differential nervous blockade, compared to the plain anesthetic solutions. In this study we evaluated the local neural and muscular toxicity of these new formulations containing 0.5% BVC or RVC complexed with HP-ß-CD (BVC(HP-ß-CD) and RVC(HP-ß-CD)). METHODS: Schwann cell viability was assessed by determination of mitochondrial dehydrogenase activity, and histopathological evaluation of the rat sciatic nerve was used to identify local neurotoxic effects (48 hours and 7 days after the treatments). Evaluations of serum creatine kinase levels and the histopathology of rat gastrocnemius muscle (48 hours after treatment) were also performed. RESULTS: Schwann cell toxicity evaluations revealed no significant differences between complexed and plain local anesthetic formulations. However, use of the complexed local anesthetics reduced serum creatine kinase levels 5.5-fold, relative to the plain formulations. The differences were significant at P < 0.05 (BVC) and P < 0.01 (RVC). The histopathological muscle evaluation showed that differences between groups treated with local anesthetics (BVC or RVC) and their respective complexed formulations (BVC(HP-ß-CD) or RVC(HP-ß-CD)) were significant (P < 0.05). CONCLUSIONS: We concluded that the new formulations presented a lower myotoxicity and a similar cytotoxic effect when compared to plain local anesthetic solutions.


Assuntos
Amidas/toxicidade , Bupivacaína/toxicidade , Ciclodextrinas/toxicidade , Nervo Isquiático/efeitos dos fármacos , Nervo Isquiático/patologia , Amidas/química , Animais , Animais Recém-Nascidos , Bupivacaína/química , Células Cultivadas , Ciclodextrinas/química , Avaliação Pré-Clínica de Medicamentos , Masculino , Doenças Musculares/induzido quimicamente , Doenças Musculares/diagnóstico , Doenças Musculares/patologia , Ratos , Ratos Wistar , Ropivacaina
13.
Front Cell Neurosci ; 16: 921916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36052340

RESUMO

Dysregulated microglia and astrocytes have been associated with progressive neurodegeneration in multiple sclerosis (MS), highlighting the need for strategies that additionally target intrinsic inflammation in the central nervous system (CNS). The objective of the present study was to investigate the glial response in experimental autoimmune encephalomyelitis (EAE)-induced mice treated with a combination of dimethyl fumarate (DMF) and pregabalin (PGB). For that, 28 C57BL/6J mice were randomly assigned to the five experimental groups: naïve, EAE, EAE-DMF, EAE-PGB, and EAE-DMF + PGB. Pharmacological treatments were initiated with the beginning of clinical signs, and all animals were euthanized at 28 dpi for the lumbar spinal cord evaluation. The results demonstrated a stronger attenuation of the clinical presentation by the combined approach. DMF alone promoted the downregulation of Iba-1 (microglia/macrophages marker) in the ventral horn compared with the non-treated EAE animals (P < 0.05). PGB treatment was associated with reduced Iba-1 immunofluorescence in both the dorsal (P < 0.05) and ventral horn (P < 0.05) compared to EAE vehicle-treated counterparts. However, the combined approach reduced the Iba-1 marker in the dorsal (P < 0.05) and ventral (P < 0.01) horns compared to non-treated EAE animals and further reduced Iba-1 in the ventral horn compared to each drug-alone approach (P < 0.05). In addition, the combination of DMF and PGB reduced activated astrocytes (GFAP) in both the dorsal and ventral horns of the spinal cord to a naïve-like level and upregulated Nrf-2 expression. Taken together, the data herein suggest robust attenuation of the glial response in EAE mice treated with DMF and PGB.

14.
Sci Rep ; 12(1): 16730, 2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36202956

RESUMO

Several recent studies have established the efficacy of photobiomodulation therapy (PBMT) in painful clinical conditions. Diabetic neuropathy (DN) can be related to activating mitogen-activated protein kinases (MAPK), such as p38, in the peripheral nerve. MAPK pathway is activated in response to extracellular stimuli, including interleukins TNF-α and IL-1ß. We verified the pain relief potential of PBMT in streptozotocin (STZ)-induced diabetic neuropathic rats and its influence on the MAPK pathway regulation and calcium (Ca2+) dynamics. We then observed that PBMT applied to the L4-L5 dorsal root ganglion (DRG) region reduced the intensity of hyperalgesia, decreased TNF-α and IL-1ß levels, and p38-MAPK mRNA expression in DRG of diabetic neuropathic rats. DN induced the activation of phosphorylated p38 (p-38) MAPK co-localized with TRPV1+ neurons; PBMT partially prevented p-38 activation. DN was related to an increase of p38-MAPK expression due to proinflammatory interleukins, and the PBMT (904 nm) treatment counteracted this condition. Also, the sensitization of DRG neurons by the hyperglycemic condition demonstrated during the Ca2+ dynamics was reduced by PBMT, contributing to its anti-hyperalgesic effects.


Assuntos
Diabetes Mellitus , Neuropatias Diabéticas , Terapia com Luz de Baixa Intensidade , Animais , Cálcio/metabolismo , Cálcio da Dieta/metabolismo , Diabetes Mellitus/metabolismo , Neuropatias Diabéticas/metabolismo , Neuropatias Diabéticas/radioterapia , Gânglios Espinais/metabolismo , Hiperalgesia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Estreptozocina/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
15.
Stem Cell Res Ther ; 12(1): 303, 2021 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-34051869

RESUMO

BACKGROUND: Nerve injuries are debilitating, leading to long-term motor deficits. Remyelination and axonal growth are supported and enhanced by growth factor and cytokines. Combination of nerve guidance conduits (NGCs) with adipose-tissue-derived multipotent mesenchymal stromal cells (AdMSCs) has been performing promising strategy for nerve regeneration. METHODS: 3D-printed polycaprolactone (PCL)-NGCs were fabricated. Wistar rats subjected to critical sciatic nerve damage (12-mm gap) were divided into sham, autograft, PCL (empty NGC), and PCL + MSCs (NGC multi-functionalized with 106 canine AdMSCs embedded in heterologous fibrin biopolymer) groups. In vitro, the cells were characterized and directly stimulated with interferon-gamma to evaluate their neuroregeneration potential. In vivo, the sciatic and tibial functional indices were evaluated for 12 weeks. Gait analysis and nerve conduction velocity were analyzed after 8 and 12 weeks. Morphometric analysis was performed after 8 and 12 weeks following lesion development. Real-time PCR was performed to evaluate the neurotrophic factors BDNF, GDNF, and HGF, and the cytokine and IL-10. Immunohistochemical analysis for the p75NTR neurotrophic receptor, S100, and neurofilament was performed with the sciatic nerve. RESULTS: The inflammatory environment in vitro have increased the expression of neurotrophins BDNF, GDNF, HGF, and IL-10 in canine AdMSCs. Nerve guidance conduits multi-functionalized with canine AdMSCs embedded in HFB improved functional motor and electrophysiological recovery compared with PCL group after 12 weeks. However, the results were not significantly different than those obtained using autografts. These findings were associated with a shift in the regeneration process towards the formation of myelinated fibers. Increased immunostaining of BDNF, GDNF, and growth factor receptor p75NTR was associated with the upregulation of BDNF, GDNF, and HGF in the spinal cord of the PCL + MSCs group. A trend demonstrating higher reactivity of Schwann cells and axonal branching in the sciatic nerve was observed, and canine AdMSCs were engrafted at 30 days following repair. CONCLUSIONS: 3D-printed NGCs multi-functionalized with canine AdMSCs embedded in heterologous fibrin biopolymer as cell scaffold exerted neuroregenerative effects. Our multimodal approach supports the trophic microenvironment, resulting in a pro-regenerative state after critical sciatic nerve injury in rats.


Assuntos
Células-Tronco Mesenquimais , Animais , Cães , Regeneração Nervosa , Impressão Tridimensional , Ratos , Ratos Wistar , Células de Schwann , Nervo Isquiático
16.
Cells ; 10(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34943780

RESUMO

Skeletal muscle atrophy occurs in several pathological conditions, such as cancer, especially during cancer-induced cachexia. This condition is associated with increased morbidity and poor treatment response, decreased quality of life, and increased mortality in cancer patients. A leucine-rich diet could be used as a coadjutant therapy to prevent muscle atrophy in patients suffering from cancer cachexia. Besides muscle atrophy, muscle function loss is even more important to patient quality of life. Therefore, this study aimed to investigate the potential beneficial effects of leucine supplementation on whole-body functional/movement properties, as well as some markers of muscle breakdown and inflammatory status. Adult Wistar rats were randomly distributed into four experimental groups. Two groups were fed with a control diet (18% protein): Control (C) and Walker 256 tumour-bearing (W), and two other groups were fed with a leucine-rich diet (18% protein + 3% leucine): Leucine Control (L) and Leucine Walker 256 tumour-bearing (LW). A functional analysis (walking, behaviour, and strength tests) was performed before and after tumour inoculation. Cachexia parameters such as body weight loss, muscle and fat mass, pro-inflammatory cytokine profile, and molecular and morphological aspects of skeletal muscle were also determined. As expected, Walker 256 tumour growth led to muscle function decline, cachexia manifestation symptoms, muscle fibre cross-section area reduction, and classical muscle protein degradation pathway activation, with upregulation of FoxO1, MuRF-1, and 20S proteins. On the other hand, despite having no effect on the walking test, inflammation status or muscle oxidative capacity, the leucine-rich diet improved muscle strength and behaviour performance, maintained body weight, fat and muscle mass and decreased some protein degradation markers in Walker 256 tumour-bearing rats. Indeed, a leucine-rich diet alone could not completely revert cachexia but could potentially diminish muscle protein degradation, leading to better muscle functional performance in cancer cachexia.


Assuntos
Caquexia/dietoterapia , Proteína Forkhead Box O1/genética , Leucina/farmacologia , Proteínas Musculares/genética , Atrofia Muscular/dietoterapia , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Animais , Caquexia/genética , Caquexia/patologia , Suplementos Nutricionais , Humanos , Inflamação/dietoterapia , Inflamação/genética , Inflamação/patologia , Leucina/metabolismo , Atrofia Muscular/genética , Atrofia Muscular/patologia , Neoplasias/complicações , Neoplasias/dietoterapia , Neoplasias/genética , Proteólise/efeitos dos fármacos , Qualidade de Vida , Ratos
17.
Neurosci Lett ; 736: 135253, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32710918

RESUMO

Peripheral neuropathy is a complication of diabetes commonly associated with pain and decline in motor compound action potential, leading to alterations in plantar pressure during gait. We identified motor impairments in streptozotocin (STZ)-induced diabetic neuropathic rats and correlated with mechanical withdrawal thresholds, establishing this correlation as a complementary method to investigate the development of chronic hyperalgesia in diabetic neuropathy. METHODS: UNICAMP's Ethics Committee (protocol number 3902-1) approved all experiments. Male Lewis rats (200-250 g) received a STZ-low-dose (25 mg/kg/day) (STZ group) or 0.1 M sodium citrate buffer (SCB, control group) once a day, during five consecutive days. Diabetic rats (250 mg/dL blood glucose) were submitted to electronic von Frey and CatWalk tests at 0, 7, 14, 21, and 28 days after treatment. RESULTS: STZ, but not SCB, induced diabetes. After the 14th day (STZ)-induced diabetic rats showed mechanical hyperalgesia and a reduction in the hind limbs footprint intensities. At the 28th day, rats presented alterations in spatial parameters (Maximum Contact Area; Stride Length; Print Area), which showed a strong correlation with mechanical withdrawal thresholds (r2 = 0.97; 0.99, and 0.93, respectively). CONCLUSIONS: Correlation between gait parameters and mechanical withdrawal thresholds enables a better experimental approach to evaluate the development of chronic hyperalgesia in the STZ-induced diabetes model. It allows a concise crosstalk of motor and sensorial functions, which are usually analyzed individually. CatWalk gait parameters can be used as a complementary tool to investigate the development of hyperalgesia in STZ-induced diabetic neuropathic rats.


Assuntos
Diabetes Mellitus Experimental , Neuropatias Diabéticas , Análise da Marcha/métodos , Transtornos Neurológicos da Marcha , Hiperalgesia , Animais , Diabetes Mellitus Experimental/complicações , Neuropatias Diabéticas/complicações , Transtornos Neurológicos da Marcha/etiologia , Hiperalgesia/etiologia , Masculino , Ratos , Ratos Endogâmicos Lew
18.
Stem Cells Int ; 2020: 8834360, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33178285

RESUMO

Dorsal root rhizotomy (DRZ) is currently considered an untreatable injury, resulting in the loss of sensitive function and usually leading to neuropathic pain. In this context, we recently proposed a new surgical approach to treat DRZ that uses platelet-rich plasma (PRP) gel to restore the spinal reflex. Success was correlated with the reentry of primary afferents into the spinal cord. Here, aiming to enhance previous results, cell therapy with bioengineered human embryonic stem cells (hESCs) to overexpress fibroblast growth factor 2 (FGF2) was combined with PRP. For these experiments, adult female rats were submitted to a unilateral rhizotomy of the lumbar spinal dorsal roots, which was followed by root repair with PRP gel with or without bioengineered hESCs. One week after DRZ, the spinal cords were processed to evaluate changes in the glial response (GFAP and Iba-1) and excitatory synaptic circuits (VGLUT1) by immunofluorescence. Eight weeks postsurgery, the lumbar intumescences were processed for analysis of the repaired microenvironment by transmission electron microscopy. Spinal reflex recovery was evaluated by the electronic Von Frey method for eight weeks. The transcript levels for human FGF2 were over 37-fold higher in the induced hESCs than in the noninduced and the wildtype counterparts. Altogether, the results indicate that the combination of hESCs with PRP gel promoted substantial and prominent axonal regeneration processes after DRZ. Thus, the repair of dorsal roots, if done appropriately, may be considered an approach to regain sensory-motor function after dorsal root axotomy.

19.
Heliyon ; 6(5): e03882, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32426535

RESUMO

The objective of this study was to evaluate the effects of red Light Emiting Diode (red LED) irradiation on fibroblasts in adipose-derived mesenchymal stem cells (ASC) co-culture on the scratch assay. We hypothesized that red LED irradiation could stimulate paracrine secretion of ASC, contributing to the activation of genes and molecules involved in cell migration and tissue repair. ASC were co-cultured with NIH/3T3 fibroblasts through direct contact and subjected to red LED irradiation (1.45 J/cm2/5min6s) after the scratch assay, during 4 days. Four groups were established: fibroblasts (F), fibroblasts + LED (FL), fibroblasts + ASC (FC) and fibroblasts + LED + ASC (FLC). The analyzes were based on Ctgf and Reck expression, quantification of collagen types I and III, tenomodulin, VEGF, TGF-ß1, MMP-2 and MMP-9, as well as viability analysis and cell migration. Higher Ctgf expression was observed in FC compared to F. Group FC presented higher amount of tenomodulin and VEGF in relation to the other groups. In the cell migration analysis, a higher number of cells was observed in the scratched area of the FC group on the 4th day. There were no differences between groups considering cell viability, Reck expression, amount of collagen types I and III, MMP-2 and TGF-ß1, whereas TGF-ß1 was not detected in the FC group and the MMP-9 in none of the groups. Our hypothesis was not supported by the results because the red LED irradiation decreased the healing response of ASC. An inhibitory effect of the LED irradiation associated with ASC co-culture was observed with reduction of the amount of TGF-ß1, VEGF and tenomodulin, possibly involved in the reduced cell migration. In turn, the ASC alone seem to have modulated fibroblast behavior by increasing Ctgf, VEGF and tenomodulin, leading to greater cell migration. In conclusion, red LED and ASC therapy can have independent effects on fibroblast wound healing, but the combination of both does not have a synergistic effect. Therefore, future studies with other parameters of red LED associated with ASC should be tested aiming clinical application for tissue repair.

20.
Neurosci Lett ; 451(1): 34-9, 2009 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-19103252

RESUMO

Avulsion of ventral roots induces degeneration of most axotomized motoneurons. At present there are no effective strategies to prevent such neuronal loss and to preserve the affected spinal circuits. Interestingly, changes in the spinal cord network also occur during the course of the experimental model of multiple sclerosis (experimental autoimmune encephalomyelitis-EAE). Glatiramer acetate (GA) significantly reduces the seriousness of the symptoms during the exacerbation of EAE. However, little is known about its effects on motoneurons. In the present study, we investigated whether GA has an influence on synapse plasticity and glial reaction after ventral root avulsion (VRA). Lewis rats were subjected to the avulsion of lumbar ventral roots and treated with GA. The animals were sacrificed after 14 days of treatment and the spinal cords processed for immunohistochemistry. A correlation between the synaptic changes and glial activation was obtained by performing immunolabeling against synaptophysin, GFAP and Iba-1. GA treatment preserved synaptophysin labeling, and significantly reduced the glial reaction in the area surrounding the axotomized motoneurons. After ventral root avulsion, GA treatment was also neuroprotective. The present results indicate that the immunomodulator GA has an influence on the stability of nerve terminals in the spinal cord, which may in turn contribute to future treatment strategies after proximal lesions to spinal motoneurons.


Assuntos
Neurônios Motores/efeitos dos fármacos , Degeneração Neural/tratamento farmacológico , Plasticidade Neuronal/efeitos dos fármacos , Peptídeos/farmacologia , Rizotomia/efeitos adversos , Medula Espinal/efeitos dos fármacos , Animais , Biomarcadores/análise , Biomarcadores/metabolismo , Proteínas de Ligação ao Cálcio/análise , Proteínas de Ligação ao Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Citoproteção/efeitos dos fármacos , Citoproteção/fisiologia , Modelos Animais de Doenças , Acetato de Glatiramer , Proteína Glial Fibrilar Ácida/análise , Proteína Glial Fibrilar Ácida/metabolismo , Gliose/tratamento farmacológico , Gliose/fisiopatologia , Gliose/prevenção & controle , Imuno-Histoquímica , Imunossupressores/farmacologia , Imunossupressores/uso terapêutico , Proteínas dos Microfilamentos , Neurônios Motores/patologia , Degeneração Neural/fisiopatologia , Degeneração Neural/prevenção & controle , Plasticidade Neuronal/fisiologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Peptídeos/uso terapêutico , Ratos , Ratos Endogâmicos Lew , Medula Espinal/patologia , Medula Espinal/fisiopatologia , Raízes Nervosas Espinhais/lesões , Raízes Nervosas Espinhais/patologia , Raízes Nervosas Espinhais/fisiopatologia , Sinaptofisina/análise , Sinaptofisina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA