Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochim Biophys Acta Gen Subj ; 1861(4): 824-838, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28012742

RESUMO

Snake venoms present a great diversity of pharmacologically active compounds that may be applied as research and biotechnological tools, as well as in drug development and diagnostic tests for certain diseases. The most abundant toxins have been extensively studied in the last decades and some of them have already been used for different purposes. Nevertheless, most of the minor snake venom protein classes remain poorly explored, even presenting potential application in diverse areas. The main difficulty in studying these proteins lies on the impossibility of obtaining sufficient amounts of them for a comprehensive investigation. The advent of more sensitive techniques in the last few years allowed the discovery of new venom components and the in-depth study of some already known minor proteins. This review summarizes information regarding some structural and functional aspects of low abundant snake venom proteins classes, such as growth factors, hyaluronidases, cysteine-rich secretory proteins, nucleases and nucleotidases, cobra venom factors, vespryns, protease inhibitors, antimicrobial peptides, among others. Some potential applications of these molecules are discussed herein in order to encourage researchers to explore the full venom repertoire and to discover new molecules or applications for the already known venom components.


Assuntos
Proteínas/química , Proteínas/metabolismo , Venenos de Serpentes/química , Venenos de Serpentes/metabolismo , Animais , Toxinas Biológicas/química , Toxinas Biológicas/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-38915449

RESUMO

Background: Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. There is no effective treatment for neurodegenerative diseases. Snake venoms are a cocktail of proteins and peptides with great therapeutic potential and might be useful in the treatment of neurodegenerative diseases. Crotapotin is the acid chain of crotoxin, the major component of Crotalus durissus collilineatus venom. PD is characterized by low levels of neurotrophins, and synaptic and axonal degeneration; therefore, neurotrophic compounds might delay the progression of PD. The neurotrophic potential of crotapotin has not been studied yet. Methods: We evaluated the neurotrophic potential of crotapotin in untreated PC12 cells, by assessing the induction of neurite outgrowth. The activation of the NGF signaling pathway was investigated through pharmacological inhibition of its main modulators. Additionally, its neuroprotective and neurorestorative effects were evaluated by assessing neurite outgrowth and cell viability in PC12 cells treated with the dopaminergic neurotoxin MPP+ (1-methyl-4-phenylpyridinium), known to induce Parkinsonism in humans and animal models. Results: Crotapotin induced neuritogenesis in PC12 cells through the NGF-signaling pathway, more specifically, by activating the NGF-selective receptor trkA, and the PI3K/Akt and the MAPK/ERK cascades, which are involved in neuronal survival and differentiation. In addition, crotapotin had no cytotoxic effect and protected PC12 cells against the inhibitory effects of MPP+ on cell viability and differentiation. Conclusion: These findings show, for the first time, that crotapotin has neurotrophic/neuroprotective/neurorestorative potential and might be beneficial in Parkinson's disease. Additional studies are necessary to evaluate the toxicity of crotapotin in other cell models.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38317796

RESUMO

Tityus serrulatus scorpion is responsible for a significant number of envenomings in Brazil, ranging from mild to severe, and in some cases, leading to fatalities. While supportive care is the primary treatment modality, moderate and severe cases require antivenom administration despite potential limitations and adverse effects. The remarkable proliferation of T. serrulatus scorpions, attributed to their biology and asexual reproduction, contributes to a high incidence of envenomation. T. serrulatus scorpion venom predominantly consists of short proteins acting as neurotoxins (α and ß), that primarily target ion channels. Nevertheless, high molecular weight compounds, including metalloproteases, serine proteases, phospholipases, and hyaluronidases, are also present in the venom. These compounds play a crucial role in envenomation, influencing the severity of symptoms and the spread of venom. This review endeavors to comprehensively understand the T. serrulatus scorpion venom by elucidating the primary high molecular weight compounds and exploring their potential contributions to envenomation. Understanding these compounds' mechanisms of action can aid in developing more effective treatments and prevention strategies, ultimately mitigating the impact of scorpion envenomation on public health in Brazil.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37818211

RESUMO

Snake venom disintegrins are low molecular weight, non-enzymatic proteins rich in cysteine, present in the venom of snakes from the families Viperidae, Crotalidae, Atractaspididae, Elapidae, and Colubridae. This family of proteins originated in venom through the proteolytic processing of metalloproteinases (SVMPs), which, in turn, evolved from a gene encoding an A Disintegrin And Metalloprotease (ADAM) molecule. Disintegrins have a recognition motif for integrins in their structure, allowing interaction with these transmembrane adhesion receptors and preventing their binding to proteins in the extracellular matrix and other cells. This interaction gives disintegrins their wide range of biological functions, including inhibition of platelet aggregation and antitumor activity. As a result, many studies have been conducted in an attempt to use these natural compounds as a basis for developing therapies for the treatment of various diseases. Furthermore, the FDA has approved Tirofiban and Eptifibatide as antiplatelet compounds, and they are synthesized from the structure of echistatin and barbourin, respectively. In this review, we discuss some of the main functional and structural characteristics of this class of proteins and their potential for therapeutic use.

5.
Vascul Pharmacol ; 152: 107211, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37607602

RESUMO

INTRODUCTION: Increased matrix metalloproteinase (MMP)-2 activity contributes to increase vascular smooth muscle cell (VSMC) proliferation in the aorta in early hypertension by cleaving many proteins of the extracellular matrix. Cleaved products from type I collagen may activate focal adhesion kinases (FAK) that trigger migration and proliferation signals in VSMC. We therefore hypothesized that increased activity of MMP-2 proteolyzes type I collagen in aortas of hypertensive rats, and thereby, induces FAK activation, thus leading to increased VSMC proliferation and hypertrophic remodeling in early hypertension. METHODS: Male Sprague-Dawley rats were submitted to renovascular hypertension by the two kidney-one clip (2K1C) model and treated with doxycycline (30 mg/kg/day) by gavage from the third to seventh-day post-surgery. Controls were submitted to sham surgery. Systolic blood pressure (SBP) was measured daily by tail-cuff plethysmography and the aortas were processed for zymography and Western blot for MMP-2, pFAK/FAK, integrins and type I collagen. Mass spectrometry, morphological analysis and Ki67 immunofluorescence were also done to identify collagen changes and VSMC proliferation. A7r5 cells were stimulated with collagen and treated with the MMP inhibitors (doxycycline or ARP-100), and with the FAK inhibitor PND1186 for 24 h. Cells were lysed and evaluated by Western blot for pFAK/FAK. RESULTS: 2K1C rats developed elevated SBP in the first week as well as increased expression and activity of MMP-2 in the aorta (p < 0.05 vs. Sham). Treatment with doxycycline reduced both MMP activity and type I collagen proteolysis in aortas of 2K1C rats (p < 0.05). Increased pFAK/FAK and increased VSMC proliferation (p < 0.05 vs. Sham groups) were also seen in the aortas of 2K1C and doxycycline decreased both parameters (p < 0.05). Higher proliferation of VSMC contributed to hypertrophic remodeling as seen by increased media/lumen ratio and cross sectional area (p < 0.05 vs Sham groups). In cell culture, MMP-2 cleaves collagen, an effect reversed by MMP inhibitors (p < 0.05). Increased levels of pFAK/FAK were observed when collagen was added in the culture medium (p < 0.05 vs control) and MMP and FAK inhibitors reduced this effect. CONCLUSIONS: Increase in MMP-2 activity proteolyzes type I collagen in the aortas of 2K1C rats and contributes to activate FAK and induces VSMC proliferation during the initial phase of hypertension.


Assuntos
Hipertensão , Metaloproteinase 2 da Matriz , Animais , Masculino , Ratos , Aorta , Proliferação de Células , Colágeno Tipo I , Doxiciclina/farmacologia , Proteína-Tirosina Quinases de Adesão Focal , Inibidores de Metaloproteinases de Matriz/farmacologia , Músculo Liso Vascular , Proteólise , Ratos Sprague-Dawley
6.
Toxins (Basel) ; 15(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999502

RESUMO

Snakebite envenomation (SBE)-induced immunity refers to individuals who have been previously bitten by a snake and developed a protective immune response against subsequent envenomations. The notion stems from observations of individuals, including in the indigenous population, who present only mild signs and symptoms after surviving multiple SBEs. Indeed, these observations have engendered scientific interest and prompted inquiries into the potential development of a protective immunity from exposure to snake toxins. This review explores the evidence of a protective immune response developing following SBE. Studies suggest that natural exposure to snake toxins can trigger protection from the severity of SBEs, mediated by specific antibodies. However, the evaluation of the immune memory response in SBE patients remains challenging. Further research is needed to elucidate the immune response dynamics and identify potential targets for therapeutic interventions. Furthermore, the estimation of the effect of previous exposures on SBE epidemiology in hyperendemic areas, such as in the indigenous villages of the Amazon region (e.g., the Yanomami population) is a matter of debate.


Assuntos
Mordeduras de Serpentes , Toxinas Biológicas , Animais , Humanos , Mordeduras de Serpentes/tratamento farmacológico , Antivenenos/uso terapêutico , Serpentes , Toxinas Biológicas/uso terapêutico , Venenos de Serpentes/uso terapêutico
7.
Toxicon X ; 14: 100120, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35345480

RESUMO

Fungal infections are becoming a serious problem of human diseases, being one of the most important fungal pathogens the yeast of the genus Candida. So far, fungal infection treatment faces different challenges, including the limited number of therapeutic drugs. Scorpions are known to be a valuable source of biologically active molecules, especially of peptide-derived molecules with a variety of biological effects and useful, lead compounds for drugs development. Here, we pioneer described the antifungal effect of venom, mucus, and the major toxin (Rc1) from Rhopalurus crassicauda scorpion. These results support the potential for Rc1 to be further investigated as a novel antifungal therapeutic to treat Candida infections.

8.
Front Immunol ; 12: 778302, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975866

RESUMO

The two-striped forest-pitviper (Bothrops bilineatus) is an arboreal snake that is currently represented by two subspecies (B. b. bilineatus and B. b. smaragdinus) that comprise a species complex, and its distribution is in the Amazon and the Atlantic Forest. The rarity of encounters with this snake is reflected in the low occurrence of cases of snakebites throughout its geographic distribution and the resulting low number of published clinical reports. However, in some areas, B. bilineatus proves to be more frequent and causes envenomations in a greater proportion. Herein, we review the main aspects of the species complex B. bilineatus, including its biology, ecology, taxonomy, morphology, genetic and molecular studies, geographic distribution, conservation status, venom, pathophysiology and clinical aspects, and epidemiology. In addition, the different antivenoms available for the treatment of envenomations caused by B. bilineatus are presented along with suggestions for future studies that are needed for a better understanding of the snakebites caused by this snake.


Assuntos
Bothrops , Adulto , Animais , Antivenenos/uso terapêutico , Bothrops/anatomia & histologia , Bothrops/genética , Bothrops/fisiologia , Brasil , Conservação dos Recursos Naturais , Venenos de Crotalídeos/toxicidade , Florestas , Humanos , Masculino , Mordeduras de Serpentes/epidemiologia , Mordeduras de Serpentes/terapia
9.
Front Pharmacol ; 11: 1132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848750

RESUMO

Animal poisons and venoms are comprised of different classes of molecules displaying wide-ranging pharmacological activities. This review aims to provide an in-depth view of toxin-based compounds from terrestrial and marine organisms used as diagnostic tools, experimental molecules to validate postulated therapeutic targets, drug libraries, prototypes for the design of drugs, cosmeceuticals, and therapeutic agents. However, making these molecules applicable requires extensive preclinical trials, with some applications also demanding clinical trials, in order to validate their molecular target, mechanism of action, effective dose, potential adverse effects, as well as other fundamental parameters. Here we go through the pitfalls for a toxin-based potential therapeutic drug to become eligible for clinical trials and marketing. The manuscript also presents an overview of the current picture for several molecules from different animal venoms and poisons (such as those from amphibians, cone snails, hymenopterans, scorpions, sea anemones, snakes, spiders, tetraodontiformes, bats, and shrews) that have been used in clinical trials. Advances and perspectives on the therapeutic potential of molecules from other underexploited animals, such as caterpillars and ticks, are also reported. The challenges faced during the lengthy and costly preclinical and clinical studies and how to overcome these hindrances are also discussed for that drug candidates going to the bedside. It covers most of the drugs developed using toxins, the molecules that have failed and those that are currently in clinical trials. The article presents a detailed overview of toxins that have been used as therapeutic agents, including their discovery, formulation, dosage, indications, main adverse effects, and pregnancy and breastfeeding prescription warnings. Toxins in diagnosis, as well as cosmeceuticals and atypical therapies (bee venom and leech therapies) are also reported. The level of cumulative and detailed information provided in this review may help pharmacists, physicians, biotechnologists, pharmacologists, and scientists interested in toxinology, drug discovery, and development of toxin-based products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA