Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
EMBO J ; 42(17): e114415, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37427462

RESUMO

Cell fragmentation is commonly observed in human preimplantation embryos and is associated with poor prognosis during assisted reproductive technology (ART) procedures. However, the mechanisms leading to cell fragmentation remain largely unknown. Here, light sheet microscopy imaging of mouse embryos reveals that inefficient chromosome separation due to spindle defects, caused by dysfunctional molecular motors Myo1c or dynein, leads to fragmentation during mitosis. Extended exposure of the cell cortex to chromosomes locally triggers actomyosin contractility and pinches off cell fragments. This process is reminiscent of meiosis, during which small GTPase-mediated signals from chromosomes coordinate polar body extrusion (PBE) by actomyosin contraction. By interfering with the signals driving PBE, we find that this meiotic signaling pathway remains active during cleavage stages and is both required and sufficient to trigger fragmentation. Together, we find that fragmentation happens in mitosis after ectopic activation of actomyosin contractility by signals emanating from DNA, similar to those observed during meiosis. Our study uncovers the mechanisms underlying fragmentation in preimplantation embryos and, more generally, offers insight into the regulation of mitosis during the maternal-zygotic transition.


Assuntos
Actomiosina , Corpos Polares , Humanos , Animais , Camundongos , Corpos Polares/metabolismo , Actomiosina/metabolismo , Blastocisto , Cromossomos , Meiose , Oócitos/metabolismo , Fuso Acromático/genética , Miosina Tipo I/genética , Miosina Tipo I/metabolismo
2.
PLoS Biol ; 20(3): e3001593, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35324889

RESUMO

Actomyosin contractility is a major engine of preimplantation morphogenesis, which starts at the 8-cell stage during mouse embryonic development. Contractility becomes first visible with the appearance of periodic cortical waves of contraction (PeCoWaCo), which travel around blastomeres in an oscillatory fashion. How contractility of the mouse embryo becomes active remains unknown. We have taken advantage of PeCoWaCo to study the awakening of contractility during preimplantation development. We find that PeCoWaCo become detectable in most embryos only after the second cleavage and gradually increase their oscillation frequency with each successive cleavage. To test the influence of cell size reduction during cleavage divisions, we use cell fusion and fragmentation to manipulate cell size across a 20- to 60-µm range. We find that the stepwise reduction in cell size caused by cleavage divisions does not explain the presence of PeCoWaCo or their accelerating rhythm. Instead, we discover that blastomeres gradually decrease their surface tensions until the 8-cell stage and that artificially softening cells enhances PeCoWaCo prematurely. We further identify the programmed down-regulation of the formin Fmnl3 as a required event to soften the cortex and expose PeCoWaCo. Therefore, during cleavage stages, cortical softening, mediated by Fmnl3 down-regulation, awakens zygotic contractility before preimplantation morphogenesis.


Assuntos
Blastômeros , Desenvolvimento Embrionário , Animais , Blastômeros/metabolismo , Embrião de Mamíferos , Feminino , Camundongos , Morfogênese , Gravidez , Zigoto
3.
Biophys J ; 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38528761

RESUMO

Compaction is the first morphogenetic movement of the eutherian mammals and involves a developmentally regulated adhesion process. Previous studies investigated cellular and mechanical aspects of compaction. During mouse and human compaction, cells spread onto each other as a result of a contractility-mediated increase in surface tension pulling at the edges of their cell-cell contacts. However, how compaction may affect the mechanical stability of cell-cell contacts remains unknown. Here, we used a dual pipette aspiration assay on cell doublets to quantitatively analyze the mechanical stability of compacting mouse embryos. We measured increased mechanical stability of contacts with rupture forces growing from 40 to 70 nN, which was highly correlated with cell-cell contact expansion. Analyzing the dynamic molecular reorganization of cell-cell contacts, we find minimal recruitment of the cell-cell adhesion molecule Cdh1 (also known as E-cadherin) to contacts but we observe its reorganization into a peripheral adhesive ring. However, this reorganization is not associated with increased effective bond density, contrary to previous reports in other adhesive systems. Using genetics, we reduce the levels of Cdh1 or replace it with a chimeric adhesion molecule composed of the extracellular domain of Cdh1 and the intracellular domain of Cdh2 (also known as N-cadherin). We find that reducing the levels of Cdh1 impairs the mechanical stability of cell-cell contacts due to reduced contact growth, which nevertheless show higher effective bond density than wild-type contacts of similar size. On the other hand, chimeric adhesion molecules cannot form large or strong contacts indicating that the intracellular domain of Cdh2 is unable to reorganize contacts and/or is mechanically weaker than the one of Cdh1 in mouse embryos. Together, we find that mouse embryo compaction mechanically strengthens cell-cell adhesion via the expansion of Cdh1 adhesive rings that maintain pre-compaction levels of effective bond density.

4.
Proc Natl Acad Sci U S A ; 116(48): 24108-24114, 2019 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-31699818

RESUMO

Metastasis is the main cause of cancer-related deaths. How a single oncogenic cell evolves within highly organized epithelium is still unknown. Here, we found that the overexpression of the protein kinase atypical protein kinase C ι (aPKCi), an oncogene, triggers basally oriented epithelial cell extrusion in vivo as a potential mechanism for early breast tumor cell invasion. We found that cell segregation is the first step required for basal extrusion of luminal cells and identify aPKCi and vinculin as regulators of cell segregation. We propose that asymmetric vinculin levels at the junction between normal and aPKCi+ cells trigger an increase in tension at these cell junctions. Moreover, we show that aPKCi+ cells acquire promigratory features, including increased vinculin levels and vinculin dynamics at the cell-substratum contacts. Overall, this study shows that a balance between cell contractility and cell-cell adhesion is crucial for promoting basally oriented cell extrusion, a mechanism for early breast cancer cell invasion.


Assuntos
Neoplasias da Mama/metabolismo , Isoenzimas/fisiologia , Proteína Quinase C/fisiologia , Vinculina/metabolismo , Neoplasias da Mama/patologia , Adesão Celular , Linhagem Celular Tumoral , Separação Celular , Humanos , Junções Intercelulares/metabolismo , Isoenzimas/genética , Isoenzimas/metabolismo , Invasividade Neoplásica , Proteína Quinase C/genética , Proteína Quinase C/metabolismo
5.
Breast Cancer Res ; 23(1): 57, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34020697

RESUMO

BACKGROUND: Endocrine therapies targeting estrogen signaling have significantly improved breast cancer (BC) patient survival, although 40% of ERα-positive BCs do not respond to those therapies. Aside from genomic signaling, estrogen triggers non-genomic pathways by forming a complex containing methylERα/Src/PI3K, a hallmark of aggressiveness and resistance to tamoxifen. We aimed to confirm the prognostic value of this complex and investigated whether its targeting could improve tumor response in vivo. METHODS: The interaction of ERα/Src and ERα/PI3K was studied by proximity ligation assay (PLA) in a cohort of 440 BC patients. We then treated patient-derived BC xenografts (PDXs) with fulvestrant or the PI3K inhibitor alpelisib (BYL719) alone or in combination. We analyzed their anti-proliferative effects on 6 ERα+ and 3 ERα- PDX models. Genomic and non-genomic estrogen signaling were assessed by measuring ERα/PI3K interaction by PLA and the expression of estrogen target genes by RT-QPCR, respectively. RESULTS: We confirmed that ERα/Src and ERα/PI3K interactions were associated with a trend to poorer survival, the latter displaying the most significant effects. In ERα+ tumors, the combination of BYL719 and fulvestrant was more effective than fulvestrant alone in 3 models, irrespective of PI3K, PTEN status, or ERα/PI3K targeting. Remarkably, resistance to fulvestrant was associated with non-genomic ERα signaling, since genomic degradation of ERα was unaltered in these tumors, whereas the treatment did not diminish the level of ERα/PI3K interaction. Interestingly, in 2 ERα- models, fulvestrant alone impacted tumor growth, and this was associated with a decrease in ERα/PI3K interaction. CONCLUSIONS: Our results demonstrate that ERα/PI3K may constitute a new prognostic marker, as well as a new target in BC. Indeed, resistance to fulvestrant in ERα+ tumors was associated with a lack of impairment of ERα/PI3K interaction in the cytoplasm. In addition, an efficient targeting of ERα/PI3K in ERα- tumors could constitute a promising therapeutic option.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Fulvestranto/uso terapêutico , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Receptores de Estrogênio/metabolismo , Tiazóis/uso terapêutico , Animais , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Genômica , Humanos , Camundongos , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Prognóstico , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Receptores de Estrogênio/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Int J Cancer ; 138(10): 2510-21, 2016 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-26686064

RESUMO

The receptor tyrosine kinase RET is implicated in the progression of luminal breast cancers (BC) but its role in estrogen receptor (ER) negative tumors is unknown. Here we investigated the expression of RET in breast cancer patients tumors and patient-derived xenografts (PDX) and evaluated the therapeutic potential of Vandetanib, a tyrosin kinase inhibitor with strong activity against RET, EGFR and VEGFR2, in ER negative breast cancer PDX. The RT-PCR analysis of RET expression in breast tumors of 446 patients and 57 PDX, showed elevated levels of RET in ER+ and HER2+ subtypes and in a small subgroup of triple-negative breast cancers (TNBC). The activity of Vandetanib was tested in vivo in three PDX models of TNBC and one model of HER2+ BC with different expression levels of RET and EGFR. Vandetanib induced tumor regression in PDX models with high expression of RET or EGFR. The effect was associated with inhibition of RET/EGFR phosphorylation and MAP kinase pathway and increased necrosis. In a PDX model with no expression of RET nor EGFR, Vandetanib slowed tumor growth without inducing tumor regression. In addition, treatment by Vandetanib decreased expression of murine Vegf receptors and the endothelial marker Cd31 in the four PDX models tested, suggesting inhibition of tumor vascularization. In summary, these preclinical results suggest that Vandetanib treatment could be useful for patients with ER negative breast cancers overexpressing Vandetanib's main targets.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Piperidinas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Quinazolinas/farmacologia , Receptores de Estrogênio/deficiência , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Modelos Animais de Doenças , Feminino , Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Camundongos , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Gradação de Tumores , Metástase Neoplásica , Neovascularização Patológica/tratamento farmacológico , Fosforilação/efeitos dos fármacos , Piperidinas/uso terapêutico , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinazolinas/uso terapêutico , RNA Mensageiro/genética , Receptores de Estrogênio/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
7.
BMC Cancer ; 14: 178, 2014 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-24625025

RESUMO

BACKGROUND: Tumor endothelial transdifferentiation and VEGFR1/2 expression by cancer cells have been reported in glioblastoma but remain poorly documented for many other cancer types. METHODS: To characterize vasculature of patient-derived tumor xenografts (PDXs), largely used in preclinical anti-angiogenic assays, we designed here species-specific real-time quantitative RT-PCR assays. Human and mouse PECAM1/CD31, ENG/CD105, FLT1/VEGFR1, KDR/VEGFR2 and VEGFA transcripts were analyzed in a large series of 150 PDXs established from 8 different tumor types (53 colorectal, 14 ovarian, 39 breast and 15 renal cell cancers, 6 small cell and 5 non small cell lung carcinomas, 13 cutaneous melanomas and 5 glioblastomas) and in two bevacizumab-treated non small cell lung carcinomas xenografts. RESULTS: As expected, mouse cell proportion in PDXs -evaluated by quantifying expression of the housekeeping gene TBP- correlated with all mouse endothelial markers and human VEGFA RNA levels. More interestingly, we observed human PECAM1/CD31 and ENG/CD105 expression in all tumor types, with higher rate in glioblastoma and renal cancer xenografts. Human VEGFR expression profile varied widely depending on tumor types with particularly high levels of human FLT1/VEGFR1 transcripts in colon cancers and non small cell lung carcinomas, and upper levels of human KDR/VEGFR2 transcripts in non small cell lung carcinomas. Bevacizumab treatment induced significant low expression of mouse Pecam1/Cd31, Eng/Cd105, Flt1/Vegfr1 and Kdr/Vefr2 while the human PECAM1/CD31 and VEGFA were upregulated. CONCLUSIONS: Taken together, our results strongly suggest existence of human tumor endothelial cells in all tumor types tested and of both stromal and tumoral autocrine VEGFA-VEGFR1/2 signalings. These findings should be considered when evaluating molecular mechanisms of preclinical response and resistance to tumor anti-angiogenic strategies.


Assuntos
Células Endoteliais/metabolismo , Perfilação da Expressão Gênica/métodos , Neoplasias Experimentais/genética , Receptores de Fatores de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/genética , Inibidores da Angiogênese/farmacologia , Animais , Anticorpos Monoclonais Humanizados/farmacologia , Bevacizumab , Biomarcadores Tumorais/metabolismo , Células Endoteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Transdução de Sinais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Commun Biol ; 7(1): 184, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38360973

RESUMO

At the early stage of tumor progression, fibroblasts are located at the outer edges of the tumor, forming an encasing layer around it. In this work, we have developed a 3D in vitro model where fibroblasts' layout resembles the structure seen in carcinoma in situ. We use a microfluidic encapsulation technology to co-culture fibroblasts and cancer cells within hollow, permeable, and elastic alginate shells. We find that in the absence of spatial constraint, fibroblasts and cancer cells do not mix but segregate into distinct aggregates composed of individual cell types. However, upon confinement, fibroblasts enwrap cancer cell spheroid. Using a combination of biophysical methods and live imaging, we find that buildup of compressive stress is required to induce fibroblasts spreading over the aggregates of tumor cells. We propose that compressive stress generated by the tumor growth might be a mechanism that prompts fibroblasts to form a capsule around the tumor.


Assuntos
Carcinoma in Situ , Fibroblastos , Humanos , Linhagem Celular Tumoral , Fibroblastos/metabolismo , Esferoides Celulares , Técnicas de Cocultura , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia
9.
Breast Cancer Res ; 14(1): R11, 2012 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-22247967

RESUMO

INTRODUCTION: Identification of new therapeutic agents for breast cancer (BC) requires preclinical models that reproduce the molecular characteristics of their respective clinical tumors. In this work, we analyzed the genomic and gene expression profiles of human BC xenografts and the corresponding patient tumors. METHODS: Eighteen BC xenografts were obtained by grafting tumor fragments from patients into Swiss nude mice. Molecular characterization of patient tumors and xenografts was performed by DNA copy number analysis and gene expression analysis using Affymetrix Microarrays. RESULTS: Comparison analysis showed that 14/18 pairs of tumors shared more than 56% of copy number alterations (CNA). Unsupervised hierarchical clustering analysis showed that 16/18 pairs segregated together, confirming the similarity between tumor pairs. Analysis of recurrent CNA changes between patient tumors and xenografts showed losses in 176 chromosomal regions and gains in 202 chromosomal regions. Gene expression profile analysis showed that less than 5% of genes had recurrent variations between patient tumors and their respective xenografts; these genes largely corresponded to human stromal compartment genes. Finally, analysis of different passages of the same tumor showed that sequential mouse-to-mouse tumor grafts did not affect genomic rearrangements or gene expression profiles, suggesting genetic stability of these models over time. CONCLUSIONS: This panel of human BC xenografts maintains the overall genomic and gene expression profile of the corresponding patient tumors and remains stable throughout sequential in vivo generations. The observed genomic profile and gene expression differences appear to be due to the loss of human stromal genes. These xenografts, therefore, represent a validated model for preclinical investigation of new therapeutic agents.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Transcriptoma , Animais , Análise por Conglomerados , Hibridização Genômica Comparativa , Variações do Número de Cópias de DNA , Feminino , Instabilidade Genômica , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Análise de Sequência com Séries de Oligonucleotídeos , Receptor ErbB-2/genética , Receptor ErbB-2/metabolismo , Transplante Heterólogo
10.
Elife ; 102021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871354

RESUMO

During the first days of mammalian development, the embryo forms the blastocyst, the structure responsible for implanting the mammalian embryo. Consisting of an epithelium enveloping the pluripotent inner cell mass and a fluid-filled lumen, the blastocyst results from a series of cleavage divisions, morphogenetic movements, and lineage specification. Recent studies have identified the essential role of actomyosin contractility in driving cytokinesis, morphogenesis, and fate specification, leading to the formation of the blastocyst. However, the preimplantation development of contractility mutants has not been characterized. Here, we generated single and double maternal-zygotic mutants of non-muscle myosin II heavy chains (NMHCs) to characterize them with multiscale imaging. We found that Myh9 (NMHC II-A) is the major NMHC during preimplantation development as its maternal-zygotic loss causes failed cytokinesis, increased duration of the cell cycle, weaker embryo compaction, and reduced differentiation, whereas Myh10 (NMHC II-B) maternal-zygotic loss is much less severe. Double maternal-zygotic mutants for Myh9 and Myh10 show a much stronger phenotype, failing most of the attempts of cytokinesis. We found that morphogenesis and fate specification are affected but nevertheless carry on in a timely fashion, regardless of the impact of the mutations on cell number. Strikingly, even when all cell divisions fail, the resulting single-celled embryo can initiate trophectoderm differentiation and lumen formation by accumulating fluid in increasingly large vacuoles. Therefore, contractility mutants reveal that fluid accumulation is a cell-autonomous process and that the preimplantation program carries on independently of successful cell division.


Assuntos
Blastocisto/metabolismo , Divisão Celular , Mutação , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Animais , Ciclo Celular , Diferenciação Celular , Citocinese , Bases de Dados Genéticas , Técnicas de Cultura Embrionária , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microscopia de Vídeo , Morfogênese , Cadeias Pesadas de Miosina/metabolismo , Miosina não Muscular Tipo IIB/metabolismo , Fatores de Tempo , Imagem com Lapso de Tempo
11.
Oncotarget ; 12(8): 859-872, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889306

RESUMO

Significant rational is available for specific targeting of PI3K/AKT/mTOR pathway in the treatment of non-small cell lung cancer (NSCLC). However, almost all clinical trials that have evaluated Pi3K pathway-based monotherapies/combinations did not observe an improvement of patient's outcome. The aim of our study was therefore to define combination of treatment based on the determination of predictive markers of resistance to the mTORC1 inhibitor RAD001/Everolimus. An in vivo study showed high efficacy of RAD001 in NSCLC Patient-Derived Xenografts (PDXs). When looking at biomarkers of resistance by RT-PCR study, three genes were found to be highly expressed in resistant tumors, i.e., PLK1, CXCR4, and AXL. We have then focused our study on the combination of RAD001 + Volasertib, a PLK1 inhibitor, and observed a high antitumor activity of the combination in comparison to each monotherapy; similarly, a clear synergistic effect between the two compounds was found in an in vitro study. Pharmacodynamics study demonstrated that this synergy was due to (1) tumor vascularization decrease, increase of the HIF1 protein expression and decrease of the intracellular pH, and (2) decrease of the Carbonic Anhydrase 9 (CAIX) protein that could not correct intracellular acidosis. In conclusion, all these preclinical data strongly suggest that the inhibition of mTORC1 and PLK1 proteins may be a promising therapeutic approach for NSCLC patients.

12.
Anticancer Drugs ; 21(10): 927-31, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20827173

RESUMO

Androgen-dependent and castration-resistant prostate cancer (PC) is usually sensitive to docetaxel chemotherapy. Nevertheless, docetaxel resistance frequently appears after several cycles of treatment, raising the problem of salvage treatment for docetaxel-resistant PC patients. Although the combination of docetaxel and estramustine prolongs metastasis-free and overall survival of patients with androgen-independent PC, the use of this modality remains limited in elderly patients or patients with several comorbidities, especially vascular disease or gastrointestinal toxicity, because of unacceptable toxicity including venous thrombosis. The aims of this study were therefore (i) to evaluate the in-vivo efficacy of estramustine combined with docetaxel since initial tumor growth and following the appearance of docetaxel resistance in the androgen-dependent human PC xenograft PAC120, and (ii) to evaluate the efficacy of estramustine in six human androgen-independent PC models derived from PAC120. In docetaxel-resistant tumor-bearing mice, estramustine alone induced a TGD2 of 18 days, whereas the combination of docetaxel and estramustine induced a TGD2 of 50 days (P<0.05) with no significantly different overall survival of mice treated by docetaxel and estramustine since day 1 or since the onset of resistance to docetaxel. Among the six human androgen-independent tumors treated with estramustine alone, two highly sensitive models, two intermediate responding tumors, and two resistant models were observed. Altogether, these results suggest that estramustine should be combined with docetaxel in PC patients, but the use of this treatment could be limited, particularly in elderly patients, to docetaxel-resistant cases.


Assuntos
Antineoplásicos Hormonais/farmacologia , Estramustina/farmacologia , Gastroenteropatias , Neoplasias da Próstata/tratamento farmacológico , Taxoides/farmacologia , Doenças Vasculares , Idoso , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Comorbidade , Docetaxel , Avaliação Pré-Clínica de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Gastroenteropatias/epidemiologia , Humanos , Masculino , Camundongos , Camundongos Nus , Neoplasias Hormônio-Dependentes/sangue , Neoplasias Hormônio-Dependentes/tratamento farmacológico , Neoplasias Hormônio-Dependentes/epidemiologia , Orquiectomia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/sangue , Neoplasias da Próstata/epidemiologia , Taxa de Sobrevida , Doenças Vasculares/epidemiologia , Trombose Venosa/induzido quimicamente , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Science ; 365(6452): 465-468, 2019 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-31371608

RESUMO

During mouse pre-implantation development, the formation of the blastocoel, a fluid-filled lumen, breaks the radial symmetry of the blastocyst. The factors that control the formation and positioning of this basolateral lumen remain obscure. We found that accumulation of pressurized fluid fractures cell-cell contacts into hundreds of micrometer-size lumens. These microlumens eventually discharge their volumes into a single dominant lumen, which we model as a process akin to Ostwald ripening, underlying the coarsening of foams. Using chimeric mutant embryos, we tuned the hydraulic fracturing of cell-cell contacts and steered the coarsening of microlumens, allowing us to successfully manipulate the final position of the lumen. We conclude that hydraulic fracturing of cell-cell contacts followed by contractility-directed coarsening of microlumens sets the first axis of symmetry of the mouse embryo.


Assuntos
Blastocisto/citologia , Adesão Celular , Desenvolvimento Embrionário , Animais , Pressão Hidrostática , Camundongos
14.
Clin Cancer Res ; 13(13): 3989-98, 2007 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-17606733

RESUMO

PURPOSE: To establish a panel of human breast cancer (HBC) xenografts in immunodeficient mice suitable for pharmacologic preclinical assays. EXPERIMENTAL DESIGN: 200 samples of HBCs were grafted into Swiss nude mice. Twenty-five transplantable xenografts were established (12.5%). Their characterization included histology, p53 status, genetic analysis by array comparative genomic hybridization, gene expression by Western blotting, and quantitative reverse transcription-PCR. Biological profiles of nine xenografts were compared with those of the corresponding patient's tumor. Chemosensitivities of 17 xenografts to a combination of Adriamycin and cyclophosphamide (AC), docetaxel, trastuzumab, and Degarelix were evaluated. RESULTS: Almost all patient tumors established as xenografts displayed an aggressive phenotype, i.e., high-grade, triple-negative status. The histology of the xenografts recapitulated the features of the original tumors. Mutation of p53 and inactivation of Rb and PTEN proteins were found in 83%, 30%, and 42% of HBC xenografts, respectively. Two HBCx had an ERBB2 (HER2) amplification. Large variations were observed in the expression of HER family receptors and in genomic profiles. Genomic alterations were close to those of original samples in paired tumors. Three xenografts formed lung metastases. A total of 15 of the 17 HBCx (88%) responded to AC, and 8 (47%) responded to docetaxel. One ERBB2-amplified xenograft responded to trastuzumab, whereas the other did not. The drug response of HBC xenografts was concordant with that of the patient's tumor in five of seven analyzable cases. CONCLUSIONS: This panel of breast cancer xenografts includes 15 triple-negative, one ER positive and 2 ERBB2 positive. This panel represents a useful preclinical tool for testing new agents and protocols and for further exploration of the biological basis of drug responses.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Ciclofosfamida/administração & dosagem , Modelos Animais de Doenças , Docetaxel , Doxorrubicina/administração & dosagem , Humanos , Camundongos , Camundongos Nus , Transplante de Neoplasias , Hibridização de Ácido Nucleico , Oligopeptídeos/administração & dosagem , Taxoides/administração & dosagem , Trastuzumab
15.
Clin Cancer Res ; 24(11): 2605-2615, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29463559

RESUMO

Purpose: Triple-negative breast cancer (TNBC) patients with residual disease after neoadjuvant chemotherapy have a poor outcome. We developed patient-derived xenografts (PDX) from residual tumors to identify efficient chemotherapies and predictive biomarkers in a context of resistance to anthracyclines- and taxanes-based treatments.Experimental Design: PDX were established from residual tumors of primary breast cancer patients treated in neoadjuvant setting. TNBC PDX were treated by anthracyclines, taxanes, platins, and capecitabine. Predictive biomarkers were identified by transcriptomic and immunohistologic analysis. Downregulation of RB1 was performed by siRNA in a cell line established from a PDX.Results: Residual TNBC PDX were characterized by a high tumor take, a short latency, and a poor prognosis of the corresponding patients. With the exception of BRCA1/2-mutated models, residual PDX were resistant to anthracyclines, taxanes, and platins. Capecitabine, the oral prodrug of 5-FU, was highly efficient in 60% of PDX, with two models showing complete responses. Prior treatment of a responder PDX with 5-FU increased expression of thymidylate synthase and decreased efficacy of capecitabine. Transcriptomic and IHC analyses of 32 TNBC PDX, including both residual tumors and treatment-naïve derived tumors, identified RB1 and TYMP proteins as predictive biomarkers for capecitabine response. Finally, RB1 knockdown in a cell line established from a capecitabine-responder PDX decreased sensitivity to 5-FU treatment.Conclusions: We identified capecitabine as efficient chemotherapy in TNBC PDX models established from residual disease and resistant to anthracyclines, taxanes, and platins. RB1 positivity and high expression of TYMP were significantly associated with capecitabine response. Clin Cancer Res; 24(11); 2605-15. ©2018 AACR.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Capecitabina/farmacologia , Proteínas de Ligação a Retinoblastoma/genética , Timidina Fosforilase/genética , Neoplasias de Mama Triplo Negativas/genética , Ubiquitina-Proteína Ligases/genética , Animais , Antimetabólitos Antineoplásicos/uso terapêutico , Capecitabina/uso terapêutico , Proliferação de Células , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Feminino , Fluoruracila/farmacologia , Perfilação da Expressão Gênica , Inativação Gênica , Humanos , Camundongos , RNA Interferente Pequeno/genética , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/mortalidade , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Mol Cancer Ther ; 16(8): 1634-1644, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28522592

RESUMO

The benefit of EGFR-TKI in non-small cell lung cancer has been demonstrated in mutant EGFR tumors as first-line treatment but the benefit in wild-type EGFR tumors is marginal as well as restricted to maintenance therapy in pretreated patients. This work aimed at questioning the effects of cisplatin initial treatment on the EGFR pathway in non-small cell lung cancer and the functional consequences in vitro and in in vivo animal models of patient-derived xenografts (PDX). We establish here that cisplatin pretreatment specifically sensitizes wild-type EGFR-expressing cells to erlotinib, contrary to what happens in mutant EGFR cells and with a blocking EGFR antibody, both in vitro and in vivo The sensitization entails the activation of the kinase Src upstream of EGFR, thereafter transactivating EGFR through a ligand-independent activation. We propose a combination of markers that enable to discriminate between the tumors sensitized to erlotinib or not in PDX models, which should be worth testing in patients. These markers might be useful for the selection of patients who would benefit from erlotinib as a maintenance therapy. Mol Cancer Ther; 16(8); 1634-44. ©2017 AACR.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/metabolismo , Cloridrato de Erlotinib/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Animais , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Meios de Cultivo Condicionados/farmacologia , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Cloridrato de Erlotinib/farmacologia , Injeções , Ligantes , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Quinases da Família src/metabolismo
18.
Oncotarget ; 7(30): 48206-48219, 2016 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-27374081

RESUMO

Triple-negative breast cancers (TNBC) are characterized by frequent alterations in the PI3K/AKT/mTOR signaling pathway. In this study, we analyzed PI3K pathway activation in 67 patient-derived xenografts (PDX) of breast cancer and investigated the anti-tumor activity of the mTOR inhibitor everolimus in 15 TNBC PDX with different expression and mutational status of PI3K pathway markers. Expression of the tumor suppressors PTEN and INPP4B was lost in 55% and 76% of TNBC PDX, respectively, while mutations in PIK3CA and AKT1 genes were rare. In 7 PDX treatment with everolimus resulted in a tumor growth inhibition higher than 50%, while 8 models were classified as low responder or resistant. Basal-like, LAR (Luminal AR), mesenchymal and HER2-enriched tumors were present in both responder and resistant groups, suggesting that tumor response to everolimus is not restricted to a specific TNBC subtype. Analysis of treated tumors showed a correlation between tumor response and post-treatment phosphorylation of AKT, increased in responder PDX, while PI3K pathway markers at baseline were not sufficient to predict everolimus response. In conclusion, targeting mTOR decreased tumor growth in 7 out of 15 TNBC PDX tested. Response to everolimus occurred in different TNBC subtypes and was associated with post-treatment increase of P-AKT.


Assuntos
Everolimo/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Animais , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Nus , Terapia de Alvo Molecular , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
PLoS One ; 11(7): e0157670, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27388901

RESUMO

Drug discovery efforts have focused on the tumor microenvironment in recent years. However, few studies have characterized the stroma component in patient-derived xenografts (PDXs) and genetically engineered mouse models (GEMs). In this study, we characterized the stroma in various models of breast cancer tumors in mice. We performed transcriptomic and flow cytometry analyses on murine populations for a series of 25 PDXs and the two most commonly used GEMs (MMTV-PyMT and MMTV-erBb2). We sorted macrophages from five models. We then profiled gene expression in these cells, which were also subjected to flow cytometry for phenotypic characterization. Hematopoietic cell composition, mostly macrophages and granulocytes, differed between tumors. Macrophages had a specific polarization phenotype related to their M1/M2 classification and associated with the expression of genes involved in the recruitment, invasion and metastasis processes. The heterogeneity of the stroma component of the models studied suggests that tumor cells modify their microenvironment to satisfy their needs. Our observations suggest that such models are of relevance for preclinical studies.


Assuntos
Neoplasias da Mama/fisiopatologia , Macrófagos/citologia , Neoplasias Mamárias Animais/fisiopatologia , Animais , Separação Celular , Modelos Animais de Doenças , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Fenótipo , Receptor ErbB-2/metabolismo , Transcriptoma , Microambiente Tumoral/genética
20.
PLoS One ; 9(11): e104227, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25375638

RESUMO

PURPOSE: (1) To determine TweakR expression in human breast cancers (BC), (2) evaluate the antitumor effect of the anti-TweakR antibody PDL192, used alone or after chemotherapy-induced complete remission (CR), on patient-derived BC xenografts (PDX) and (3) define predictive markers of response. EXPERIMENTAL DESIGN: TweakR expression was analyzed by IHC on patients and PDXs BC samples. In vivo antitumor effect of PDL192 was evaluated on eight TweakR-positive BC PDXs alone or after complete remission induced by a combination of doxorubicin and cyclophosphamide. Using both responding and resistant PDX tumors after PDL192 administration, RT-QPCR were performed on a wide list of selected candidate genes to identify predictive markers of response. RESULTS: TweakR protein was expressed in about half of human BC samples. In vivo PDL192 treatment had significantly anti-tumor activity in 4 of 8 TweakR-positive BC PDXs, but no correlation between the expression level of the Tweak receptor and response to therapy was observed. PDL192 also significantly delayed tumor relapse after CR. Finally, an 8 gene signature was defined from sensitive and resistant PDXs. CONCLUSIONS: PDL192 was highly efficient in some BC PDXs. We found 8 genes that were differentially expressed in responding and resistant tumors and could constitute a gene expression signature which would need to be extended to other xenograft models for confirmation. These data confirm the therapeutic potential of TweakR targeting in BC and the possibility of prospectively selecting patients who might benefit from therapy.


Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/genética , Anticorpos Monoclonais Humanizados/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ciclofosfamida/uso terapêutico , Doxorrubicina/uso terapêutico , Feminino , Humanos , Pessoa de Meia-Idade , Receptores do Fator de Necrose Tumoral/imunologia , Receptores do Fator de Necrose Tumoral/metabolismo , Receptor de TWEAK , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA