Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Oecologia ; 186(3): 633-643, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29332147

RESUMO

Different growth rates of grasses from South American natural grasslands are adaptations to soils of low fertility. Grasses with fast growth rate are species with an accumulation of nutrients in soluble forms, with a high metabolic rate. This work aimed to study whether grasses with different growth rates have different phosphorus (P) uptake and efficiency of P use with high and low P availability in soil, as well as whether phosphatase activity is related to the species growth rate and variations in P biochemical forms in the tissues. Three native grasses (Axonopus affinis, Paspalum notatum, and Andropogon lateralis) were grown in pots with soil. Along plant growth, biomass production and its structural components were measured, as well as leaf acid phosphatase activity and leaf P chemical fractions. At 40 days of growth, leaf acid phosphatase activity declined by about 20-30% with an increase of P availability in soil for A. affinis and P. notatum, respectively. Under both soil P levels, P. notatum showed the highest plant total biomass, leaf dry weight and highest P use efficiency. A. affinis presented the higher P uptake efficiency and soluble organic P concentration in the leaf tissues. A. lateralis showed P-Lipid concentration 1.6 and 1.3 times higher than A. affinis and P. notatum, respectively. In conclusion, acid phosphatase activity in grass of higher growth rate is related to higher remobilization of P due to higher demand, as in A. affinis, and higher growth rates are associated with higher P uptake efficiency.


Assuntos
Fósforo , Poaceae , Monoéster Fosfórico Hidrolases , Solo
2.
Environ Sci Pollut Res Int ; 29(56): 85376-85388, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35793024

RESUMO

The objectives were (a) to evaluate whether grasses native to the Pampa biome, Axonopus affinis Chase, Paspalum notatum Flüggé and Paspalum plicatulum Michx, and the invasive grass Cynodon dactylon (L.). Pers have the potential to phytoremediate soil contaminated with Cu (0, 35 and 70 mg Cu kg-1); (b) assess whether the growth of these species is compromised by the excess of Cu available in the soil; and (c) determine the impact of excess Cu on the physiological responses of the studied species. C. dactylon presented the best performance in soil contaminated with 35 mg of Cu kg-1. In C. dactylon, the concentrations of chlorophyll b and carotenoids increased, as did the photosynthetic rate and plant growth. Phytotoxic effects of Cu in soil contaminated with 70 mg of Cu kg-1 were more severe on A. affinis and led to plant death. The other species presented reduced photosynthetic and growth rates, as well as increased activity of antioxidant enzymes such as superoxide dismutase and guaiacol peroxidase. This very same Cu level has decreased photosynthetic pigment concentrations in P. notatum and P. plicatulum. On the other hand, it did not change chlorophyll a and b concentrations in C. dactylon and increased carotenoid concentrations in it. High values recorded for Cu bioaccumulation-in-grass-root factor, mainly in P. plicatulum, have indicated that the investigated plants are potential phytostabilizers. High C. dactylon biomass production-in comparison to other species-compensates for the relatively low metal concentration in its tissues by increasing metal extraction from the soil. This makes C. dactylon more efficient in the phytoremediation process than other species.


Assuntos
Paspalum , Poluentes do Solo , Biodegradação Ambiental , Fazendas , Poluentes do Solo/análise , Clorofila A , Espécies Introduzidas , Brasil , Cobre/análise , Solo , Ecossistema , Antioxidantes
3.
Front Vet Sci ; 7: 519698, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33304935

RESUMO

The goals of this study were to evaluate the length of time grazing which should be monitored over a 24-h period to predict the grazing behavior of beef heifers within a season and determine the patterns of foraging activity over 24 h. A database was constructed between 2010 and 2012 for beef heifers managed under rotational grazing in a natural grassland. Grazing, rumination, and other activity times were assessed visually during 24 h on 15 occasions. Data were classified according to climatic seasons, generating 12 replicates in summer, 18 in spring, 24 in autumn, and 36 in winter. Treatments were the evaluation of four distinct periods: from sunrise to sunset (DAY-SUN), daylight duration from dawn to nightfall (DAYLIGHT), DAYLIGHT plus 2 h (DAYLIGHT+2), DAYLIGHT to midnight (DAYLIGHT to 0), and the entire 24 h period (CONTROL). Differences for grazing, rumination, and other activities were found in all seasons for the evaluation periods. Sampling sufficiency was reached only with the DAYLIGHT to 0 and CONTROL for all four climatic seasons. The DAYLIGHT to 0 treatment covered 75% of a 24-h period and 95% of the mean foraging time took place during this time interval. Considering grazing distribution during a day, in the warm seasons, the major grazing period during mornings occurred earlier than in the cool seasons, and in cool seasons, the grazing peak was observed during the afternoon. Visual observations from dawn until midnight represented the total grazing time and natural behavior of heifers and could be used to represent grazing activities for the entire day.

4.
PeerJ ; 6: e4991, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915701

RESUMO

Soil microbial communities' assembly is strongly tied to changes in temperature and moisture. Although microbial functional redundancy seems to overcome taxonomical composition changes, the sensitivity and resilience of soil microbial communities from subtropical regions in response to seasonal variations are still poorly understood. Thus, the development of new strategies for biodiversity conservation and sustainable management require a complete understanding of the soil abiotic process involved in the selection of microbial taxa and functions. In this work, we used state of the art molecular methodologies (Next Generation Sequencing) to compare the taxonomic (metataxonomics) and functional (metatranscriptomics) profiles among soil samples from two subtropical natural grasslands located in the Pampa biome, Brazil, in response to short-term seasonal variations. Our data suggest that grasslands maintained a stable microbial community membership along the year with oscillation in abundance. Apparently soil microbial taxa are more susceptible to natural climatic disturbances while functions are more stable and change with less intensity along the year. Finally, our data allow us to conclude that the most abundant microbial groups and functions were shared between seasons and locations reflecting the existence of a stable taxonomical and functional core microbiota.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA