Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Appl Microbiol Biotechnol ; 101(2): 859-870, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27812803

RESUMO

Water generated during oil exploration is chemically complex and contains high concentrations of ammonium and, in some cases, high salinity. The most common way to remove ammonium from effluent is a biological process, which can be performed by different routes and different groups of microorganisms. However, the presence of salts in the effluents could be an inhibiting factor for biological processes, interfering directly with treatment. This study aimed to evaluate changes in the profile of a microbial community involved in the process of ammonium removal when subjected to a gradual increase of salt (NaCl), in which the complete inhibition of the ammonium removal process occurred at 125 g L-1 NaCl. During the sludge acclimatization process, samples were collected and submitted to denaturing gradient gel electrophoresis (DGGE) and massive sequencing of the 16S ribosomal RNA (rRNA) genes. As the salt concentration increased in the reactor, a change in the microbial community was observed by the DGGE band profiles. As a result, there was a reduction in the presence of bacterial populations, and an increase in archaeal populations was found. The sequencing data suggested that ammonium removal in the reactor was carried out by different metabolic routes by autotrophic nitrifying bacteria, such as Nitrosococcus, Nitrosomonas, Nitrosovibrio, Nitrospira, and Nitrococcus; ammonium-oxidizing archaea Candidatus nitrosoarchaeum; ANAMMOX microorganisms, such as Candidatus brocadia, Candidatus kuenenia, and Candidatus scalindua; and microorganisms with the potential to be heterotrophic nitrifying, such as Paracoccus spp., Pseudomonas spp., Bacillus spp., Marinobacter sp., and Alcaligenes spp.


Assuntos
Compostos de Amônio/metabolismo , Archaea/isolamento & purificação , Bactérias/isolamento & purificação , Biota , Salinidade , Microbiologia da Água , Água/química , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Eletroforese em Gel de Gradiente Desnaturante , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo
2.
Gene ; 703: 50-57, 2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-30965126

RESUMO

Desulfovibrio alaskensis is a Gram-negative bacterial species that belongs to the group of Sulphate Reducing Bacteria (SRB) and presents prophages in genomes, a common characteristic of the genus Desulfovibrio. Genetic material can be transported by outer membrane vesicles, however, no data regarding the production of these vesicles has been reported for D. alaskensis. To verify the expression of D. alaskensis prophages and their involvement with outer membrane vesicles, the DSM16109 strain was used. The DSM16109 strain had three prophages and presented reduced growth after mitomycin C addition when compared to the control culture. This reduction was accompanied by the presence of virus-like particles (VLPs), indicating mitomycin C dependent prophage induction. The increase in the number of cap gene copies and transcriptions of the three prophages was verified in the control sample, however, without the formation of VLPs. Prophage genes were identified in outer membrane vesicles from cultures treated and not treated with mitomycin C. DSM16109 prophages are expressed spontaneously but only in the presence of mitomycin C was it possible to observe VLP formation. Due to the genetic material detection from the prophages within outer membrane vesicles, this property may be related to the horizontal transfer of viral genes.


Assuntos
Desulfovibrio/virologia , Transferência Genética Horizontal , Prófagos/genética , Vesículas Transportadoras/genética , Desulfovibrio/crescimento & desenvolvimento , Mitomicina/farmacologia , Transcrição Gênica , Proteínas Virais/genética
3.
Sci Rep ; 8(1): 9273, 2018 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-29915307

RESUMO

Bacteria of the genus Desulfovibrio belong to the group of Sulphate Reducing Bacteria (SRB). SRB generate significant liabilities in the petroleum industry, mainly due to their ability to microbiologically induce corrosion, biofilm formation and H2S production. Bacteriophages are an alternative control method for SRB, whose information for this group of bacteria however, is scarce. The present study developed a workflow for the identification of complete prophages in Desulfovibrio. Poly-lysogenesis was shown to be common in Desulfovibrio. In the 47 genomes analyzed 53 complete prophages were identified. These were classified within the order Caudovirales, with 69.82% belonging to the Myoviridade family. More than half the prophages identified have genes coding for lysozyme or holin. Four of the analyzed bacterial genomes present prophages with identity above 50% in the same strain, whose comparative analysis demonstrated the existence of colinearity between the sequences. Of the 17 closed bacterial genomes analyzed, 6 have the CRISPR-Cas system classified as inactive. The identification of bacterial poly-lysogeny, the proximity between the complete prophages and the possible inactivity of the CRISPR-Cas in closed bacterial genomes analyzed allowed the choice of poly-lysogenic strains with prophages belonging to the Myoviridae family for the isolation of prophages and testing of related strains for subsequent studies.


Assuntos
Desulfovibrio/genética , Desulfovibrio/virologia , Genoma Bacteriano , Prófagos/genética , Sistemas CRISPR-Cas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA