Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Cell ; 183(3): 786-801.e19, 2020 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-33125893

RESUMO

Trained immunity, a functional state of myeloid cells, has been proposed as a compelling immune-oncological target. Its efficient induction requires direct engagement of myeloid progenitors in the bone marrow. For this purpose, we developed a bone marrow-avid nanobiologic platform designed specifically to induce trained immunity. We established the potent anti-tumor capabilities of our lead candidate MTP10-HDL in a B16F10 mouse melanoma model. These anti-tumor effects result from trained immunity-induced myelopoiesis caused by epigenetic rewiring of multipotent progenitors in the bone marrow, which overcomes the immunosuppressive tumor microenvironment. Furthermore, MTP10-HDL nanotherapy potentiates checkpoint inhibition in this melanoma model refractory to anti-PD-1 and anti-CTLA-4 therapy. Finally, we determined MTP10-HDL's favorable biodistribution and safety profile in non-human primates. In conclusion, we show that rationally designed nanobiologics can promote trained immunity and elicit a durable anti-tumor response either as a monotherapy or in combination with checkpoint inhibitor drugs.


Assuntos
Inibidores de Checkpoint Imunológico/uso terapêutico , Imunidade , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/patologia , Nanotecnologia , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Animais , Comportamento Animal , Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/metabolismo , Proliferação de Células/efeitos dos fármacos , Colesterol/metabolismo , Feminino , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade/efeitos dos fármacos , Imunoterapia , Lipoproteínas HDL/metabolismo , Camundongos Endogâmicos C57BL , Primatas , Distribuição Tecidual/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos
2.
Arterioscler Thromb Vasc Biol ; 44(3): 720-740, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38269588

RESUMO

BACKGROUND: Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS: Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS: Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1ß after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS: Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.


Assuntos
Lisofosfolipídeos , Monócitos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Humanos , Diglicerídeos/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoproteína(a)/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1419-1431, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38634280

RESUMO

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.


Assuntos
Metilação de DNA , Células Endoteliais , Epigênese Genética , Placa Aterosclerótica , Humanos , Masculino , Feminino , Idoso , Prognóstico , Pessoa de Meia-Idade , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Fatores Etários , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Células Cultivadas , Fatores de Risco , Medição de Risco
4.
Arterioscler Thromb Vasc Biol ; 43(10): 1836-1850, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37589136

RESUMO

BACKGROUND: Women presenting with coronary artery disease more often present with fibrous atherosclerotic plaques, which are currently understudied. Phenotypically modulated smooth muscle cells (SMCs) contribute to atherosclerosis in women. How these phenotypically modulated SMCs shape female versus male plaques is unknown. METHODS: Gene regulatory networks were created using RNAseq gene expression data from human carotid atherosclerotic plaques. The networks were prioritized based on sex bias, relevance for smooth muscle biology, and coronary artery disease genetic enrichment. Network expression was linked to histologically determined plaque phenotypes. In addition, their expression in plaque cell types was studied at single-cell resolution using single-cell RNAseq. Finally, their relevance for disease progression was studied in female and male Apoe-/- mice fed a Western diet for 18 and 30 weeks. RESULTS: Here, we identify multiple sex-stratified gene regulatory networks from human carotid atherosclerotic plaques. Prioritization of the female networks identified 2 main SMC gene regulatory networks in late-stage atherosclerosis. Single-cell RNA sequencing mapped these female networks to 2 SMC phenotypes: a phenotypically modulated myofibroblast-like SMC network and a contractile SMC network. The myofibroblast-like network was mostly expressed in plaques that were vulnerable in women. Finally, the mice ortholog of key driver gene MFGE8 (milk fat globule EGF and factor V/VIII domain containing) showed retained expression in advanced plaques from female mice but was downregulated in male mice during atherosclerosis progression. CONCLUSIONS: Female atherosclerosis is characterized by gene regulatory networks that are active in fibrous vulnerable plaques rich in myofibroblast-like SMCs.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Feminino , Masculino , Humanos , Camundongos , Animais , Placa Aterosclerótica/patologia , Redes Reguladoras de Genes , Miofibroblastos/metabolismo , Doença da Artéria Coronariana/patologia , Aterosclerose/patologia , Miócitos de Músculo Liso/metabolismo
5.
Immun Ageing ; 21(1): 27, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698438

RESUMO

BACKGROUND: Atherosclerosis, the main underlying pathology of cardiovascular disease, is a chronic inflammatory disease characterized by lipid accumulation and immune cell responses in the vascular wall, resulting in plaque formation. It is well-known that atherosclerosis prevalence and manifestation vary by sex. However, sexual dimorphism in the immune landscape of atherosclerotic plaques has up to date not been studied at high-resolution. In this study, we investigated sex-specific differences in atherosclerosis development and the immunological landscape of aortas at single-cell level in aged Ldlr-/- mice. METHODS: We compared plaque morphology between aged male and female chow diet-fed Ldlr-/- mice (22 months old) with histological analysis. Using single-cell RNA-sequencing and flow cytometry on CD45+ immune cells from aortas of aged Ldlr-/- mice, we explored the immune landscape in the atherosclerotic environment in males and females. RESULTS: We show that plaque volume is comparable in aged male and female mice, and that plaques in aged female mice contain more collagen and cholesterol crystals, but less necrotic core and macrophage content compared to males. We reveal increased immune cell infiltration in female aortas and found that expression of pro-atherogenic markers and inflammatory signaling pathways was enriched in plaque immune cells of female mice. Particularly, female aortas show enhanced activation of B cells (Egr1, Cd83, Cd180), including age-associated B cells, in addition to an increased M1/M2 macrophage ratio, where Il1b+ M1-like macrophages display a more pro-inflammatory phenotype (Nlrp3, Cxcl2, Mmp9) compared to males. In contrast, increased numbers of age-associated Gzmk+CD8+ T cells, dendritic cells, and Trem2+ macrophages were observed in male aortas. CONCLUSIONS: Altogether, our findings highlight that sex is a variable that contributes to immunological differences in the atherosclerotic plaque environment in mice and provide valuable insights for further preclinical studies into the impact of sex on the pathophysiology of atherosclerosis.

6.
Eur Heart J ; 44(14): 1216-1230, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-36478058

RESUMO

The advent of single-cell biology opens a new chapter for understanding human biological processes and for diagnosing, monitoring, and treating disease. This revolution now reaches the field of cardiovascular disease (CVD). New technologies to interrogate CVD samples at single-cell resolution are allowing the identification of novel cell communities that are important in shaping disease development and direct towards new therapeutic strategies. These approaches have begun to revolutionize atherosclerosis pathology and redraw our understanding of disease development. This review discusses the state-of-the-art of single-cell analysis of atherosclerotic plaques, with a particular focus on human lesions, and presents the current resolution of cellular subpopulations and their heterogeneity and plasticity in relation to clinically relevant features. Opportunities and pitfalls of current technologies as well as the clinical impact of single-cell technologies in CVD patient care are highlighted, advocating for multidisciplinary and international collaborative efforts to join the cellular dots of CVD.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Placa Aterosclerótica , Humanos , Aterosclerose/patologia , Placa Aterosclerótica/patologia
7.
J Allergy Clin Immunol ; 152(2): 326-337, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271317

RESUMO

The pervasive role of the innate immune system is established by interferons. Emerging research shows an underappreciated ability of macrophages to regulate and propagate interferon responses in infectious and autoinflammatory disease states. In this review, we will discuss recent findings demonstrating the immunomodulating effects of macrophage interferon signaling. Apart from provoking cellular antimicrobial defenses, interferons augment the inflammatory activity of macrophages. These immunologic adaptations place the macrophage in the center of the interferon system and at the forefront of immunity. Consequently, macrophages are implicated in the pathogenesis of interferon-driven autoinflammatory disorders, such as SLE. In these disease states, the recognition of immunogenic ligands triggers macrophages to adopt an inflammatory phenotype through interferon signaling. This will amplify immune responses, eventually leading to autoinflammation. A better understanding of the macrophage's role in interferon signaling will support the future elucidation of novel targets amendable for clinical treatment.


Assuntos
Imunidade Inata , Macrófagos , Humanos , Inflamação , Interferons
8.
J Lipid Res ; 64(2): 100325, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592658

RESUMO

Lysoplasmalogens are a class of vinyl ether bioactive lipids that have a central role in plasmalogen metabolism and membrane fluidity. The liver X receptor (LXR) transcription factors are important determinants of cellular lipid homeostasis owing to their ability to regulate cholesterol and fatty acid metabolism. However, their role in governing the composition of lipid species such as lysoplasmalogens in cellular membranes is less well studied. Here, we mapped the lipidome of bone marrow-derived macrophages (BMDMs) following LXR activation. We found a marked reduction in the levels of lysoplasmalogen species in the absence of changes in the levels of plasmalogens themselves. Transcriptional profiling of LXR-activated macrophages identified the gene encoding transmembrane protein 86a (TMEM86a), an integral endoplasmic reticulum protein, as a previously uncharacterized sterol-regulated gene. We demonstrate that TMEM86a is a direct transcriptional target of LXR in macrophages and microglia and that it is highly expressed in TREM2+/lipid-associated macrophages in human atherosclerotic plaques, where its expression positively correlates with other LXR-regulated genes. We further show that both murine and human TMEM86a display active lysoplasmalogenase activity that can be abrogated by inactivating mutations in the predicted catalytic site. Consequently, we demonstrate that overexpression of Tmem86a in BMDM markedly reduces lysoplasmalogen abundance and membrane fluidity, while reciprocally, silencing of Tmem86a increases basal lysoplasmalogen levels and abrogates the LXR-dependent reduction of this lipid species. Collectively, our findings implicate TMEM86a as a sterol-regulated lysoplasmalogenase in macrophages that contributes to sterol-dependent membrane remodeling.


Assuntos
Macrófagos , Esteróis , Animais , Humanos , Camundongos , Receptores X do Fígado/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Receptores Imunológicos , Esteróis/metabolismo , Fatores de Transcrição/metabolismo
9.
Curr Issues Mol Biol ; 45(5): 4228-4245, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37232738

RESUMO

SP140 is an epigenetic reader protein expressed predominantly in immune cells. GWAS studies have shown an association between SP140 single nucleotide polymorphisms (SNPs) and diverse autoimmune and inflammatory diseases, suggesting a possible pathogenic role for SP140 in immune-mediated diseases. We previously demonstrated that treatment of human macrophages with the novel selective inhibitor of the SP140 protein (GSK761) reduced the expression of endotoxin-induced cytokines, implicating a role of SP140 in the function of inflammatory macrophages. In this study, we investigated the effects of GSK761 on in vitro human dendritic cell (DC) differentiation and maturation, assessing the expression of cytokines and co-stimulatory molecules and their capacity to stimulate T-cell activation and induce phenotypic changes. In DCs, lipopolysaccharide (LPS) stimulation induced an increase in SP140 expression and its recruitment to transcription start sites (TSS) of pro-inflammatory cytokine genes. Moreover, LPS-induced cytokines such as TNF, IL-6, and IL-1ß were reduced in GSK761- or SP140 siRNA- treated DCs. Although GSK761 did not significantly affect the expression of surface markers that define the differentiation of CD14+ monocytes into immature DCs (iDCs), subsequent maturation of iDCs to mature DCs was significantly inhibited. GSK761 strongly reduced expression of the maturation marker CD83, the co-stimulatory molecules CD80 and CD86, and the lipid-antigen presentation molecule CD1b. Finally, when the ability of DCs to stimulate recall T-cell responses by vaccine-specific T cells was assessed, T cells stimulated by GSK761-treated DCs showed reduced TBX21 and RORA expression and increased FOXP3 expression, indicating a preferential generation of regulatory T cells. Overall, this study suggests that SP140 inhibition enhances the tolerogenic properties of DCs, supporting the rationale of targeting SP140 in autoimmune and inflammatory diseases where DC-mediated inflammatory responses contribute to disease pathogenesis.

10.
J Immunol ; 207(2): 555-568, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34233910

RESUMO

As key cells of the immune system, macrophages coordinate the activation and regulation of the immune response. Macrophages present a complex phenotype that can vary from homeostatic, proinflammatory, and profibrotic to anti-inflammatory phenotypes. The factors that drive the differentiation from monocyte to macrophage largely define the resultant phenotype, as has been shown by the differences found in M-CSF- and GM-CSF-derived macrophages. We explored alternative inflammatory mediators that could be used for in vitro differentiation of human monocytes into macrophages. IFN-γ is a potent inflammatory mediator produced by lymphocytes in disease and infections. We used IFN-γ to differentiate human monocytes into macrophages and characterized the cells at a functional and proteomic level. IFN-γ alone was sufficient to generate macrophages (IFN-γ Mϕ) that were phagocytic and responsive to polarization. We demonstrate that IFN-γ Mϕ are potent activators of T lymphocytes that produce IL-17 and IFN-γ. We identified potential markers (GBP-1, IP-10, IL-12p70, and IL-23) of IFN-γ Mϕ and demonstrate that these markers are enriched in the skin of patients with inflamed psoriasis. Collectively, we show that IFN-γ can drive human monocyte to macrophage differentiation, leading to bona fide macrophages with inflammatory characteristics.


Assuntos
Diferenciação Celular/fisiologia , Inflamação/metabolismo , Interferon gama/metabolismo , Macrófagos/metabolismo , Monócitos/metabolismo , Psoríase/metabolismo , Biomarcadores/metabolismo , Células Cultivadas , Humanos , Fator Estimulador de Colônias de Macrófagos/metabolismo , Fenótipo , Proteômica/métodos , Pele/metabolismo
11.
BMC Biol ; 20(1): 182, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986286

RESUMO

BACKGROUND: SP140 is a bromodomain-containing protein expressed predominantly in immune cells. Genetic polymorphisms and epigenetic modifications in the SP140 locus have been linked to Crohn's disease (CD), suggesting a role in inflammation. RESULTS: We report the development of the first small molecule SP140 inhibitor (GSK761) and utilize this to elucidate SP140 function in macrophages. We show that SP140 is highly expressed in CD mucosal macrophages and in in vitro-generated inflammatory macrophages. SP140 inhibition through GSK761 reduced monocyte-to-inflammatory macrophage differentiation and lipopolysaccharide (LPS)-induced inflammatory activation, while inducing the generation of CD206+ regulatory macrophages that were shown to associate with a therapeutic response to anti-TNF in CD patients. SP140 preferentially occupies transcriptional start sites in inflammatory macrophages, with enrichment at gene loci encoding pro-inflammatory cytokines/chemokines and inflammatory pathways. GSK761 specifically reduces SP140 chromatin binding and thereby expression of SP140-regulated genes. GSK761 inhibits the expression of cytokines, including TNF, by CD14+ macrophages isolated from CD intestinal mucosa. CONCLUSIONS: This study identifies SP140 as a druggable epigenetic therapeutic target for CD.


Assuntos
Doença de Crohn , Inibidores do Fator de Necrose Tumoral , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Doença de Crohn/genética , Doença de Crohn/metabolismo , Citocinas/genética , Citocinas/metabolismo , Epigênese Genética , Humanos , Macrófagos , Fatores de Transcrição/genética
12.
Trends Immunol ; 40(2): 113-127, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30626541

RESUMO

Aging is a complex process with an impact on essentially all organs. Declined cellular repair causes increased damage at genomic and proteomic levels upon aging. This can lead to systemic changes in metabolism and pro-inflammatory cytokine production, resulting in low-grade inflammation, or 'inflammaging'. Tissue macrophages, gatekeepers of parenchymal homeostasis and integrity, are prime inflammatory cytokine producers, as well as initiators and regulators of inflammation. In this opinion piece, we summarize intrinsic alterations in macrophage phenotype and function with age. We propose that alternatively activated macrophages (M2-like), which are yet pro-inflammatory, can accumulate in tissues and promote inflammaging. Age-related increases in endoplasmic reticulum stress and mitochondrial dysfunction might be cell-intrinsic forces driving this unusual phenotype.


Assuntos
Senescência Celular , Inflamação/metabolismo , Macrófagos/metabolismo , Animais , Citocinas/biossíntese , Estresse do Retículo Endoplasmático , Humanos , Mitocôndrias/metabolismo
13.
Circ Res ; 127(11): 1437-1455, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32981416

RESUMO

RATIONALE: Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed. OBJECTIVE: Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis. METHODS AND RESULTS: We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4+ and CD8+ T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells. CONCLUSIONS: This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human disease.


Assuntos
Doenças das Artérias Carótidas/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Linfócitos/metabolismo , Células Mieloides/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Análise de Célula Única , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Transdiferenciação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Células Endoteliais/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Linfócitos/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células Mieloides/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , RNA-Seq
14.
Circ Res ; 126(10): 1346-1359, 2020 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-32160811

RESUMO

RATIONALE: Patients with elevated levels of lipoprotein(a) [Lp(a)] are hallmarked by increased metabolic activity in the arterial wall on positron emission tomography/computed tomography, indicative of a proinflammatory state. OBJECTIVE: We hypothesized that Lp(a) induces endothelial cell inflammation by rewiring endothelial metabolism. METHODS AND RESULTS: We evaluated the impact of Lp(a) on the endothelium and describe that Lp(a), through its oxidized phospholipid content, activates arterial endothelial cells, facilitating increased transendothelial migration of monocytes. Transcriptome analysis of Lp(a)-stimulated human arterial endothelial cells revealed upregulation of inflammatory pathways comprising monocyte adhesion and migration, coinciding with increased 6-phophofructo-2-kinase/fructose-2,6-biphosphatase (PFKFB)-3-mediated glycolysis. ICAM (intercellular adhesion molecule)-1 and PFKFB3 were also found to be upregulated in carotid plaques of patients with elevated levels of Lp(a). Inhibition of PFKFB3 abolished the inflammatory signature with concomitant attenuation of transendothelial migration. CONCLUSIONS: Collectively, our findings show that Lp(a) activates the endothelium by enhancing PFKFB3-mediated glycolysis, leading to a proadhesive state, which can be reversed by inhibition of glycolysis. These findings pave the way for therapeutic agents targeting metabolism aimed at reducing inflammation in patients with cardiovascular disease.


Assuntos
Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Glicólise , Leucócitos/metabolismo , Lipoproteína(a)/metabolismo , Migração Transendotelial e Transepitelial , Idoso , Idoso de 80 Anos ou mais , Animais , Apolipoproteína B-100/genética , Apolipoproteína B-100/metabolismo , Apolipoproteínas A/genética , Apolipoproteínas A/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/terapia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Humanos , Mediadores da Inflamação , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/patologia , Lipoproteína(a)/genética , Masculino , Camundongos Transgênicos , Pessoa de Meia-Idade , Mutação , Oligonucleotídeos Antissenso/uso terapêutico , Fosfofrutoquinase-2/metabolismo , Receptores de LDL/deficiência , Receptores de LDL/genética
15.
Eur Heart J ; 42(42): 4309-4320, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34343254

RESUMO

AIM: Preclinical work indicates that low-density lipoprotein cholesterol (LDL-C) not only drives atherosclerosis by directing the innate immune response at plaque level but also augments proinflammatory monocyte production in the bone marrow (BM) compartment. In this study, we aim to unravel the impact of LDL-C on monocyte production in the BM compartment in human subjects. METHODS AND RESULTS: A multivariable linear regression analysis in 12 304 individuals of the EPIC-Norfolk prospective population study showed that LDL-C is associated with monocyte percentage (ß = 0.131 [95% CI: 0.036-0.225]; P = 0.007), at the expense of granulocytes (ß = -0.876 [95% CI: -1.046 to -0.705]; P < 0.001). Next, we investigated whether altered haematopoiesis could explain this monocytic skewing by characterizing CD34+ BM haematopoietic stem and progenitor cells (HSPCs) of patients with familial hypercholesterolaemia (FH) and healthy normocholesterolaemic controls. The HSPC transcriptomic profile of untreated FH patients showed increased gene expression in pathways involved in HSPC migration and, in agreement with our epidemiological findings, myelomonocytic skewing. Twelve weeks of cholesterol-lowering treatment reverted the myelomonocytic skewing, but transcriptomic enrichment of monocyte-associated inflammatory and migratory pathways persisted in HSPCs post-treatment. Lastly, we link hypercholesterolaemia to perturbed lipid homeostasis in HSPCs, characterized by lipid droplet formation and transcriptomic changes compatible with increased intracellular cholesterol availability. CONCLUSIONS: Collectively, these data highlight that LDL-C impacts haematopoiesis, promoting both the number and the proinflammatory activation of circulating monocytes. Furthermore, this study reveals a potential contributory role of HSPC transcriptomic reprogramming to residual inflammatory risk in FH patients despite cholesterol-lowering therapy.


Assuntos
Medula Óssea , Monócitos , Colesterol , Hematopoese , Humanos , Estudos Prospectivos
16.
Circ Res ; 124(1): 94-100, 2019 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30582442

RESUMO

RATIONALE: Several studies have suggested a role for the gut microbiota in inflammation and atherogenesis. A causal relation relationship between gut microbiota, inflammation, and atherosclerosis has not been explored previously. OBJECTIVE: Here, we investigated whether a proinflammatory microbiota from Caspase1-/- ( Casp1-/-) mice accelerates atherogenesis in Ldlr-/- mice. METHOD AND RESULTS: We treated female Ldlr-/- mice with antibiotics and subsequently transplanted them with fecal microbiota from Casp1-/- mice based on a cohousing approach. Autologous transplantation of fecal microbiota of Ldlr-/- mice served as control. Mice were cohoused for 8 or 13 weeks and fed chow or high-fat cholesterol-rich diet. Fecal samples were collected, and factors related to inflammation, metabolism, intestinal health, and atherosclerotic phenotypes were measured. Unweighted Unifrac distances of 16S rDNA (ribosomal DNA) sequences confirmed the introduction of the Casp1-/- and Ldlr-/- microbiota into Ldlr-/- mice (referred to as Ldlr-/-( Casp1-/-) or Ldlr-/-( Ldlr-/-) mice). Analysis of atherosclerotic lesion size in the aortic root demonstrated a significant 29% increase in plaque size in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) mice compared with Ldlr-/-( Ldlr-/-) mice. We found increased numbers of circulating monocytes and neutrophils and elevated proinflammatory cytokine levels in plasma in high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. Neutrophil accumulation in the aortic root of Ldlr-/-( Casp1-/-) mice was enhanced compared with Ldlr-/-( Ldlr-/-) mice. 16S-rDNA-encoding sequence analysis in feces identified a significant reduction in the short-chain fatty acid-producing taxonomies Akkermansia, Christensenellaceae, Clostridium, and Odoribacter in Ldlr-/-( Casp1-/-) mice. Consistent with these findings, cumulative concentrations of the anti-inflammatory short-chain fatty acids propionate, acetate and butyrate in the cecum were significantly reduced in 13-week high-fat cholesterol-fed Ldlr-/-( Casp1-/-) compared with Ldlr-/-( Ldlr-/-) mice. CONCLUSIONS: Introduction of the proinflammatory Casp1-/- microbiota into Ldlr-/- mice enhances systemic inflammation and accelerates atherogenesis.


Assuntos
Aorta/metabolismo , Doenças da Aorta/microbiologia , Aterosclerose/microbiologia , Bactérias/metabolismo , Citocinas/metabolismo , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Mediadores da Inflamação/metabolismo , Inflamação/microbiologia , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/metabolismo , Doenças da Aorta/patologia , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Caspase 1/genética , Caspase 1/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Disbiose , Ácidos Graxos/metabolismo , Feminino , Interações Hospedeiro-Patógeno , Inflamação/genética , Inflamação/metabolismo , Inflamação/patologia , Camundongos Knockout , Placa Aterosclerótica , Receptores de LDL/genética , Receptores de LDL/metabolismo , Fatores de Tempo
17.
Eur Heart J ; 41(24): 2262-2271, 2020 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-32268367

RESUMO

AIMS: Elevated lipoprotein(a) [Lp(a)] is strongly associated with an increased cardiovascular disease (CVD) risk. We previously reported that pro-inflammatory activation of circulating monocytes is a potential mechanism by which Lp(a) mediates CVD. Since potent Lp(a)-lowering therapies are emerging, it is of interest whether patients with elevated Lp(a) experience beneficial anti-inflammatory effects following large reductions in Lp(a). METHODS AND RESULTS: Using transcriptome analysis, we show that circulating monocytes of healthy individuals with elevated Lp(a), as well as CVD patients with increased Lp(a) levels, both have a pro-inflammatory gene expression profile. The effect of Lp(a)-lowering on gene expression and function of monocytes was addressed in two local sub-studies, including 14 CVD patients with elevated Lp(a) who received apolipoprotein(a) [apo(a)] antisense (AKCEA-APO(a)-LRx) (NCT03070782), as well as 18 patients with elevated Lp(a) who received proprotein convertase subtilisin/kexin type 9 antibody (PCSK9ab) treatment (NCT02729025). AKCEA-APO(a)-LRx lowered Lp(a) by 47% and reduced the pro-inflammatory gene expression in monocytes of CVD patients with elevated Lp(a), which coincided with a functional reduction in transendothelial migration capacity of monocytes ex vivo (-17%, P < 0.001). In contrast, PCSK9ab treatment lowered Lp(a) by 16% and did not alter transcriptome nor functional properties of monocytes, despite an additional reduction of 65% in low-density lipoprotein cholesterol (LDL-C). CONCLUSION: Potent Lp(a)-lowering following AKCEA-APO(a)-LRx, but not modest Lp(a)-lowering combined with LDL-C reduction following PCSK9ab treatment, reduced the pro-inflammatory state of circulating monocytes in patients with elevated Lp(a). These ex vivo data support a beneficial effect of large Lp(a) reductions in patients with elevated Lp(a).


Assuntos
Lipoproteína(a) , Monócitos , Apoproteína(a)/genética , Humanos , Oligonucleotídeos , Pró-Proteína Convertase 9/genética
18.
Eur Heart J ; 41(31): 2938-2948, 2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32728688

RESUMO

AIMS: GITR-a co-stimulatory immune checkpoint protein-is known for both its activating and regulating effects on T-cells. As atherosclerosis bears features of chronic inflammation and autoimmunity, we investigated the relevance of GITR in cardiovascular disease (CVD). METHODS AND RESULTS: GITR expression was elevated in carotid endarterectomy specimens obtained from patients with cerebrovascular events (n = 100) compared to asymptomatic patients (n = 93) and correlated with parameters of plaque vulnerability, including plaque macrophage, lipid and glycophorin A content, and levels of interleukin (IL)-6, IL-12, and C-C-chemokine ligand 2. Soluble GITR levels were elevated in plasma from subjects with CVD compared to healthy controls. Plaque area in 28-week-old Gitr-/-Apoe-/- mice was reduced, and plaques had a favourable phenotype with less macrophages, a smaller necrotic core and a thicker fibrous cap. GITR deficiency did not affect the lymphoid population. RNA sequencing of Gitr-/-Apoe-/- and Apoe-/- monocytes and macrophages revealed altered pathways of cell migration, activation, and mitochondrial function. Indeed, Gitr-/-Apoe-/- monocytes displayed decreased integrin levels, reduced recruitment to endothelium, and produced less reactive oxygen species. Likewise, GITR-deficient macrophages produced less cytokines and had a reduced migratory capacity. CONCLUSION: Our data reveal a novel role for the immune checkpoint GITR in driving myeloid cell recruitment and activation in atherosclerosis, thereby inducing plaque growth and vulnerability. In humans, elevated GITR expression in carotid plaques is associated with a vulnerable plaque phenotype and adverse cerebrovascular events. GITR has the potential to become a novel therapeutic target in atherosclerosis as it reduces myeloid cell recruitment to the arterial wall and impedes atherosclerosis progression.


Assuntos
Aterosclerose , Proteína Relacionada a TNFR Induzida por Glucocorticoide , Placa Aterosclerótica , Animais , Apolipoproteínas E/genética , Modelos Animais de Doenças , Glucocorticoides , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Receptores do Fator de Necrose Tumoral
19.
Curr Opin Lipidol ; 31(6): 324-330, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33027226

RESUMO

PURPOSE OF REVIEW: This review discusses the current developments on epigenetic inhibition as treatment for atherosclerosis. RECENT FINDINGS: The first phase III clinical trial targeting epigenetics in cardiovascular disease (CVD), BETonMACE, using the bromodomain inhibitor apabetalone (RVX-208) showed no significant effect on major adverse cardiovascular events (MACE) in patients with type II diabetes, low HDL-c and a recent acute coronary artery event compared with its placebo arm. SUMMARY: Preclinical and clinical studies suggest that targeting epigenetics in atherosclerosis is a promising novel therapeutic strategy against CVD. Interfering with histone acetylation by targeting histone deacetylates (HDACs) and bromodomain and extraterminal domain (BET) proteins demonstrated encouraging results in modulating disease progression in model systems. Although the first phase III clinical trial targeting BET in CVD showed no effect on MACE, we suggest that there is sufficient potential for future clinical usage based on the outcomes in specific subgroups and the fact that the study was slightly underpowered. Lastly, we propose that there is future window for targeting repressive histone modifications in atherosclerosis.


Assuntos
Aterosclerose/genética , Aterosclerose/terapia , Epigênese Genética , Animais , Humanos
20.
Proc Natl Acad Sci U S A ; 114(13): E2766-E2775, 2017 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-28292897

RESUMO

Constitutive photomorphogenesis 9 (COP9) signalosome 5 (CSN5), an isopeptidase that removes neural precursor cell-expressed, developmentally down-regulated 8 (NEDD8) moieties from cullins (thus termed "deNEDDylase") and a subunit of the cullin-RING E3 ligase-regulating COP9 signalosome complex, attenuates proinflammatory NF-κB signaling. We previously showed that CSN5 is up-regulated in human atherosclerotic arteries. Here, we investigated the role of CSN5 in atherogenesis in vivo by using mice with myeloid-specific Csn5 deletion. Genetic deletion of Csn5 in Apoe-/- mice markedly exacerbated atherosclerotic lesion formation. This was broadly observed in aortic root, arch, and total aorta of male mice, whereas the effect was less pronounced and site-specific in females. Mechanistically, Csn5 KO potentiated NF-κB signaling and proinflammatory cytokine expression in macrophages, whereas HIF-1α levels were reduced. Inversely, inhibition of NEDDylation by MLN4924 blocked proinflammatory gene expression and NF-κB activation while enhancing HIF-1α levels and the expression of M2 marker Arginase 1 in inflammatory-elicited macrophages. MLN4924 further attenuated the expression of chemokines and adhesion molecules in endothelial cells and reduced NF-κB activation and monocyte arrest on activated endothelium in vitro. In vivo, MLN4924 reduced LPS-induced inflammation, favored an antiinflammatory macrophage phenotype, and decreased the progression of early atherosclerotic lesions in mice. On the contrary, MLN4924 treatment increased neutrophil and monocyte counts in blood and had no net effect on the progression of more advanced lesions. Our data show that CSN5 is atheroprotective. We conclude that MLN4924 may be useful in preventing early atherogenesis, whereas selectively promoting CSN5-mediated deNEDDylation may be beneficial in all stages of atherosclerosis.


Assuntos
Aterosclerose/enzimologia , Complexo do Signalossomo COP9/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Aorta/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Complexo do Signalossomo COP9/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Células Endoteliais/enzimologia , Células Endoteliais/metabolismo , Feminino , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Macrófagos/enzimologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína NEDD8/genética , Proteína NEDD8/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Peptídeo Hidrolases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA