Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Artif Organs ; 43(4): 363-376, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30129977

RESUMO

Ventricular assist devices (VADs), among which the HeartMate 3 (HM3) is the latest clinically approved representative, are often the therapy of choice for patients with end-stage heart failure. Despite advances in the prevention of pump thrombosis, rates of stroke and bleeding remain high. These complications are attributed to the flow field within the VAD, among other factors. One of the HM3's characteristic features is an artificial pulse that changes the rotor speed periodically by 4000 rpm, which is meant to reduce zones of recirculation and stasis. In this study, we investigated the effect of this speed modulation on the flow fields and stresses using high-resolution computational fluid dynamics. To this end, we compared Eulerian and Lagrangian features of the flow fields during constant pump operation, during operation with the artificial pulse feature, and with the effect of the residual native cardiac cycle. We observed good washout in all investigated situations, which may explain the low incidence rates of pump thrombosis. The artificial pulse had no additional benefit on scalar washout performance, but it induced rapid variations in the flow velocity and its gradients. This may be relevant for the removal of deposits in the pump. Overall, we found that viscous stresses in the HM3 were lower than in other current VADs. However, the artificial pulse substantially increased turbulence, and thereby also total stresses, which may contribute to clinically observed issues related to hemocompatibility.


Assuntos
Simulação por Computador , Coração Auxiliar , Hemodinâmica , Hidrodinâmica , Modelos Cardiovasculares , Insuficiência Cardíaca/terapia , Humanos , Pulso Arterial
2.
IEEE Trans Biomed Eng ; 71(2): 563-573, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37643096

RESUMO

OBJECTIVE: Reynolds Averaged Navier Stokes (RANS) models are often used as the basis for modeling blood damage in turbulent flows. To predict blood damage by turbulence stresses that are not resolved in RANS, a stress formulation that represents the corresponding scales is required. Here, we compare two commonly employed stress formulations: a scalar stress representation that uses Reynolds stresses as a surrogate for unresolved fluid stresses, and an effective stress formulation based on energy dissipation. METHODS: We conducted unsteady RANS simulations of the CentriMag blood pump with three different closure models and a Large Eddy Simulation (LES) for reference. We implemented both stress representations in all models and compared the resulting total stress distributions in Eulerian and Lagrangian frameworks. RESULTS: The Reynolds-stress-based approach overestimated the contribution of unresolved stresses in RANS, with differences between closure models of up to several orders of magnitude. With the dissipation-based approach, the total stresses predicted with RANS deviated by about 50% from the LES reference, which was more accurate than only considering resolved stresses. CONCLUSION: The Reynolds-stress-based formulation proved unreliable for estimating scalar stresses in our RANS simulations, while the dissipation-based approach provided an accuracy improvement over simply neglecting unresolved stresses. SIGNIFICANCE: Our results suggest that dissipation-based inclusion of unresolved stresses should be the preferred choice for blood damage modeling in RANS.


Assuntos
Circulação Sanguínea , Simulação por Computador
3.
Front Cardiovasc Med ; 9: 775780, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35360020

RESUMO

While earlier studies reported no relevant effect of the HeartMate 3 (HM3) artificial pulse (AP) on bulk pump washout, its effect on regions with prolonged residence times remains unexplored. Using numerical simulations, we compared pump washout in the HM3 with and without AP with a focus on the clearance of the last 5% of the pump volume. Results were examined in terms of flush-volume (V f , number of times the pump was flushed with new blood) to probe the effect of the AP independent of changing flow rate. Irrespective of the flow condition, the HM3 washout scaled linearly with flush volume up to 70% washout and slowed down for the last 30%. Flush volumes needed to washout 95% of the pump were comparable with and without the AP (1.3-1.4 V f ), while 99% washout required 2.1-2.2 V f with the AP vs. 2.5 V f without the AP. The AP enhanced washout of the bend relief and near-wall regions. It also transiently shifted or eliminated stagnation regions and led to rapid wall shear stress fluctuations below the rotor and in the secondary flow path. Our results suggest potential benefits of the AP for clearance of fluid regions that might elicit in-pump thrombosis and provide possible mechanistic rationale behind clinical data showing very low rate of in-pump thrombosis with the HM3. Further optimization of the AP sequence is warranted to balance washout efficacy while limiting blood damage.

4.
ASAIO J ; 67(3): 306-313, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33627605

RESUMO

Additive manufacturing (AM) is an effective tool for accelerating knowledge gain in development processes, as it enables the production of complex prototypes at low cost and with short lead times. In the development of mechanical circulatory support, the use of cheap polymer-based AM techniques for prototype manufacturing allows more design variations to be tested, promoting a better understanding of the respective system and its optimization parameters. Here, we compare four commonly used AM processes for polymers with respect to manufacturing accuracy, surface roughness, and shape fidelity in an aqueous environment. Impeller replicas of the CentriMag blood pump were manufactured with each process and integrated into original pump housings. The assemblies were tested for hydraulic properties and hemolysis in reference to the commercially available pump. Computational fluid dynamic simulations were carried out to support the transfer of the results to other applications. In hydraulic testing, the deviation in pressure head and motor current of all additively manufactured replicas from the reference pump remained below 2% over the entire operating range of the pump. In contrast, significant deviations of up to 620% were observed in hemolysis testing. Only the replicas produced by stereolithography showed a nonsignificant deviation from the reference pump, which we attribute to the low surface roughness of parts manufactured thereby. The results suggest that there is a flow-dependent threshold of roughness above which a surface strongly contributes to cell lysis by promoting a hydraulically rough boundary flow.


Assuntos
Desenho de Equipamento/métodos , Coração Auxiliar , Manufaturas , Polímeros , Hemólise , Humanos , Hidrodinâmica , Técnicas In Vitro , Impressão Tridimensional
5.
ASAIO J ; 67(7): 737-745, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33074865

RESUMO

Contemporary centrifugal continuous-flow left ventricular assist devices (LVADs) incorporate dynamic speed modulation algorithms. Hemocompatibility of these periodic unsteady pump operating conditions has been only partially explored. We evaluated whether speed modulation induces flow alterations associated with detrimental prothrombotic effects. For this aim, we evaluated the thrombogenic profile of the HeartWare ventricular assist device (HVAD) Lavare Cycle (LC) and HeartMate3 (HM3) artificial pulse (AP) via comprehensive numerical evaluation of (i) pump washout, (ii) stagnation zones, (iii) shear stress regimens, and (iv) modeling of platelet activation status via the platelet activity state (PAS) model. Data were compared between different simulated operating scenarios, including: (i) constant rotational speed and pump pressure head, used as reference; (ii) unsteady pump pressure head as induced by cardiac pulsatility; and (iii) unsteady rotor speed modulation of the LC (HVAD) and AP (HM3). Our results show that pump washout did not improve across the different simulated scenarios in neither the HVAD nor the HM3. The LC reduced but did not eliminate flow stagnation (-57%) and did not impact metrics of HVAD platelet activation (median PAS: +0.4%). The AP reduced HM3 flow stagnation by up to 91% but increased prothrombotic shear stress and simulated platelet activation (median PAS: +124%). Our study advances understanding of the pathogenesis of LVAD thrombosis, suggesting mechanistic implications of rotor speed modulation. Our data provide rationale criteria for the future design optimization of next generation LVADs to further reduce hemocompatibility-related adverse events.


Assuntos
Coração Auxiliar , Trombose , Insuficiência Cardíaca/terapia , Frequência Cardíaca , Coração Auxiliar/efeitos adversos , Humanos , Estresse Mecânico , Trombose/etiologia
6.
Sci Rep ; 10(1): 4392, 2020 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32152325

RESUMO

Portal vein ligation (PVL) induces liver growth prior to resection. Associating liver partition and portal vein ligation (PVL plus transection=ALPPS) or the addition of the prolyl-hydroxylase inhibitor dimethyloxalylglycine (DMOG) to PVL both accelerate growth via stabilization of HIF-α subunits. This study aims at clarifying the crosstalk of hepatocytes (HC), hepatic stellate cells (HSC) and liver sinusoidal endothelial cells (LSEC) in accelerated liver growth. In vivo, liver volume, HC proliferation, vascular density and HSC activation were assessed in PVL, ALPPS, PVL+DMOG and DMOG alone. Proliferation of HC, HSC and LSEC was determined under DMOG in vitro. Conditioned media experiments of DMOG-exposed cells were performed. ALPPS and PVL+DMOG accelerated liver growth and HC proliferation in comparison to PVL. DMOG alone did not induce HC proliferation, but led to increased vascular density, which was also observed in ALPPS and PVL+DMOG. Activated HSC were detected in ALPPS, PVL+DMOG and DMOG, again not in PVL. In vitro, DMOG had no proliferative effect on HC, but conditioned supernatant of DMOG-treated HSC induced VEGF-dependent proliferation of LSEC. Transcriptome analysis confirmed activation of proangiogenic factors in hypoxic HSC. Hypoxia signaling in HSC induces VEGF-dependent angiogenesis. HSC play a crucial role in the cellular crosstalk of rapid liver regeneration.


Assuntos
Células Estreladas do Fígado/metabolismo , Hipóxia/genética , Hipóxia/metabolismo , Regeneração Hepática , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Animais , Biomarcadores , Proliferação de Células , Suscetibilidade a Doenças , Modelos Animais , Modelos Biológicos , Ratos , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
J Thorac Cardiovasc Surg ; 155(4): 1734-1742, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29361303

RESUMO

BACKGROUND: Despite advances in the Fontan procedure, there is an unmet clinical need for patient-specific graft designs that are optimized for variations in patient anatomy. The objective of this study is to design and produce patient-specific Fontan geometries, with the goal of improving hepatic flow distribution (HFD) and reducing power loss (Ploss), and manufacturing these designs by electrospinning. METHODS: Cardiac magnetic resonance imaging data from patients who previously underwent a Fontan procedure (n = 2) was used to create 3-dimensional models of their native Fontan geometry using standard image segmentation and geometry reconstruction software. For each patient, alternative designs were explored in silico, including tube-shaped and bifurcated conduits, and their performance in terms of Ploss and HFD probed by computational fluid dynamic (CFD) simulations. The best-performing options were then fabricated using electrospinning. RESULTS: CFD simulations showed that the bifurcated conduit improved HFD between the left and right pulmonary arteries, whereas both types of conduits reduced Ploss. In vitro testing with a flow-loop chamber supported the CFD results. The proposed designs were then successfully electrospun into tissue-engineered vascular grafts. CONCLUSIONS: Our unique virtual cardiac surgery approach has the potential to improve the quality of surgery by manufacturing patient-specific designs before surgery, that are also optimized with balanced HFD and minimal Ploss, based on refinement of commercially available options for image segmentation, computer-aided design, and flow simulations.


Assuntos
Implante de Prótese Vascular/instrumentação , Prótese Vascular , Desenho Assistido por Computador , Técnica de Fontan/instrumentação , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Modelagem Computacional Específica para o Paciente , Impressão Tridimensional , Desenho de Prótese , Artéria Pulmonar/cirurgia , Cardiopatias Congênitas/diagnóstico por imagem , Cardiopatias Congênitas/fisiopatologia , Humanos , Hidrodinâmica , Angiografia por Ressonância Magnética , Modelos Cardiovasculares , Valor Preditivo dos Testes , Artéria Pulmonar/diagnóstico por imagem , Artéria Pulmonar/fisiopatologia , Circulação Pulmonar , Cirurgia Assistida por Computador , Resultado do Tratamento , Fluxo de Trabalho
8.
Fluids Barriers CNS ; 14(1): 14, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28521764

RESUMO

BACKGROUND: Cerebrospinal fluid (CSF) protein analysis is an important element in the diagnostic chain for various central nervous system (CNS) pathologies. Among multiple existing approaches to interpreting measured protein levels, the Reiber diagram is particularly robust with respect to physiologic inter-individual variability, as it uses multiple subject-specific anchoring values. Beyond reliable identification of abnormal protein levels, the Reiber diagram has the potential to elucidate their pathophysiologic origin. In particular, both reduction of CSF drainage from the cranio-spinal space as well as blood-CNS barrier dysfunction have been suggested ρas possible causes of increased concentration of blood-derived proteins. However, there is disagreement on which of the two is the true cause. METHODS: We designed two computational models to investigate the mechanisms governing protein distribution in the spinal CSF. With a one-dimensional model, we evaluated the distribution of albumin and immunoglobulin G (IgG), accounting for protein transport rates across blood-CNS barriers, CSF dynamics (including both dispersion induced by CSF pulsations and advection by mean CSF flow) and CSF drainage. Dispersion coefficients were determined a priori by computing the axisymmetric three-dimensional CSF dynamics and solute transport in a representative segment of the spinal canal. RESULTS: Our models reproduce the empirically determined hyperbolic relation between albumin and IgG quotients. They indicate that variation in CSF drainage would yield a linear rather than the expected hyperbolic profile. In contrast, modelled barrier dysfunction reproduces the experimentally observed relation. CONCLUSIONS: High levels of albumin identified in the Reiber diagram are more likely to originate from a barrier dysfunction than from a reduction in CSF drainage. Our in silico experiments further support the hypothesis of decreasing spinal CSF drainage in rostro-caudal direction and emphasize the physiological importance of pulsation-driven dispersion for the transport of large molecules in the CSF.


Assuntos
Albuminas/líquido cefalorraquidiano , Proteínas Sanguíneas/metabolismo , Vazamento de Líquido Cefalorraquidiano/líquido cefalorraquidiano , Proteínas do Líquido Cefalorraquidiano/metabolismo , Modelos Biológicos , Transporte Biológico , Barreira Hematoencefálica/metabolismo , Barreira Hematoencefálica/patologia , Simulação por Computador , Humanos , Imunoglobulina G/sangue , Imunoglobulina G/líquido cefalorraquidiano
9.
Front Physiol ; 8: 731, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29042854

RESUMO

The ability to characterize the mechanical properties of erythrocytes is important in clinical and research contexts: to diagnose and monitor hematologic disorders, as well as to optimize the design of cardiovascular implants and blood circulating devices with respect to blood damage. However, investigation of red blood cell (RBC) properties generally involves preparatory and processing steps. Even though these impose mechanical stresses on cells, little is known about their impact on the final measurement results. In this study, we investigated the effect of centrifuging, vortexing, pipetting, and high pressures on several markers of mechanical blood damage and RBC membrane properties. Using human venous blood, we analyzed erythrocyte damage by measuring free hemoglobin, phosphatidylserine exposure by flow cytometry, RBC deformability by ektacytometry and the parameters of a complete blood count. We observed increased levels of free hemoglobin for all tested procedures. The release of hemoglobin into plasma depended significantly on the level of stress. Elevated pressures and centrifuging also altered mean cell volume (MCV) and mean corpuscular hemoglobin (MCH), suggesting changes in erythrocyte population, and membrane properties. Our results show that the effects of blood handling can significantly influence erythrocyte damage metrics. Careful quantification of this influence as well as other unwanted secondary effects should thus be included in experimental protocols and accounted for in clinical laboratories.

10.
Sci Rep ; 7(1): 43, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28242876

RESUMO

Despite the observed severe effects of microgravity on mammalian cells, many astronauts have completed long term stays in space without suffering from severe health problems. This raises questions about the cellular capacity for adaptation to a new gravitational environment. The International Space Station (ISS) experiment TRIPLE LUX A, performed in the BIOLAB laboratory of the ISS COLUMBUS module, allowed for the first time the direct measurement of a cellular function in real time and on orbit. We measured the oxidative burst reaction in mammalian macrophages (NR8383 rat alveolar macrophages) exposed to a centrifuge regime of internal 0 g and 1 g controls and step-wise increase or decrease of the gravitational force in four independent experiments. Surprisingly, we found that these macrophages adapted to microgravity in an ultra-fast manner within seconds, after an immediate inhibitory effect on the oxidative burst reaction. For the first time, we provided direct evidence of cellular sensitivity to gravity, through real-time on orbit measurements and by using an experimental system, in which all factors except gravity were constant. The surprisingly ultra-fast adaptation to microgravity indicates that mammalian macrophages are equipped with a highly efficient adaptation potential to a low gravity environment. This opens new avenues for the exploration of adaptation of mammalian cells to gravitational changes.


Assuntos
Adaptação Fisiológica , Macrófagos Alveolares/metabolismo , Explosão Respiratória/fisiologia , Ausência de Peso , Animais , Linhagem Celular , Ratos , Voo Espacial
11.
Circulation ; 112(21): 3264-71, 2005 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-16286590

RESUMO

BACKGROUND: In our multicenter study of the total cavopulmonary connection (TCPC), a cohort of patients with long-segment left pulmonary artery (LPA) stenosis was observed (35%). The clinically recognized detrimental effects of LPA stenosis motivated a computational fluid dynamic simulation study within 3-dimensional patient-specific and idealized TCPC pathways. The goal of this study was to quantify and evaluate the hemodynamic impact of LPA stenosis and to judge interventional strategies aimed at treating it. METHODS AND RESULTS: Simulations were conducted at equal vascular lung resistance, modeling both discrete stenosis (DS) and diffuse long-segment hypoplasia with varying degrees of obstruction (0% to 80%). Models having fenestrations of 2 to 6 mm and atrium pressures of 4 to 14 mm Hg were explored. A patient-specific, extracardiac TCPC with 85% DS was studied in its original configuration and after virtual surgery that dilated the LPA to 0% stenosis in the computer medium. Performance indices improved exponentially (R2>0.99) with decreasing obstruction. Diffuse long-segment hypoplasia was approximately 50% more severe with regard to lung perfusion and cardiac energy loss than DS. Virtual angioplasty performed on the 3-dimensional Fontan anatomy exhibiting an 85% DS stenosis produced a 61% increase in left lung perfusion and a 50% decrease in cardiac energy dissipation. After 4-mm fenestration, TCPC baffle pressure dropped by approximately 10% and left lung perfusion decreased by approximately 8% compared with the 80% DS case. CONCLUSIONS: DS <60% and diffuse long-segment hypoplasia <40% could be considered tolerable because both resulted in only a 12% decrease in left lung perfusion. In contrast to angioplasty, a fenestration (right-to-left shunt) reduced TCPC pressure at the cost of decreased left and right lung perfusion. These results suggest that pre-Fontan computational fluid dynamic simulation may be valuable for determining both the hemodynamic significance of LPA stenosis and the potential benefits of intervention.


Assuntos
Técnica de Fontan , Derivação Cardíaca Direita , Modelos Cardiovasculares , Artéria Pulmonar/patologia , Artéria Pulmonar/cirurgia , Angioplastia , Simulação por Computador , Constrição Patológica , Bases de Dados Factuais , Humanos , Imageamento Tridimensional , Técnicas In Vitro , Pulmão/irrigação sanguínea , Pulmão/fisiologia , Artéria Pulmonar/fisiologia , Circulação Pulmonar , Interface Usuário-Computador , Resistência Vascular
12.
Ann Biomed Eng ; 44(1): 174-86, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26183962

RESUMO

The Fontan surgery for single ventricle heart defects is a typical example of a clinical intervention in which patient-specific computational modeling can improve patient outcome: with the functional heterogeneity of the presenting patients, which precludes generic solutions, and the clear influence of the surgically-created Fontan connection on hemodynamics, it is acknowledged that individualized computational optimization of the post-operative hemodynamics can be of clinical value. A large body of literature has thus emerged seeking to provide clinically relevant answers and innovative solutions, with an increasing emphasis on patient-specific approaches. In this review we discuss the benefits and challenges of patient-specific simulations for the Fontan surgery, reviewing state of the art solutions and avenues for future development. We first discuss the clinical impact of patient-specific simulations, notably how they have contributed to our understanding of the link between Fontan hemodynamics and patient outcome. This is followed by a survey of methodologies for capturing patient-specific hemodynamics, with an emphasis on the challenges of defining patient-specific boundary conditions and their extension for prediction of post-operative outcome. We conclude with insights into potential future directions, noting that one of the most pressing issues might be the validation of the predictive capabilities of the developed framework.


Assuntos
Simulação por Computador , Técnica de Fontan/métodos , Cardiopatias Congênitas , Hemodinâmica , Planejamento de Assistência ao Paciente , Medicina de Precisão/métodos , Feminino , Cardiopatias Congênitas/patologia , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Humanos , Masculino
13.
Sci Rep ; 6: 38635, 2016 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-27929105

RESUMO

Observations of fast transport of fluorescent tracers in mouse brains have led to the hypothesis of bulk water flow directed from arterial to venous paravascular spaces (PVS) through the cortical interstitium. At the same time, there is evidence for interstitial solute transport by diffusion rather than by directed bulk fluid motion. It has been shown that the two views may be consolidated by intracellular water flow through astrocyte networks combined with mainly diffusive extracellular transport of solutes. This requires the presence of a driving force that has not been determined to date, but for which arterial pulsation has been suggested as the origin. Here we show that arterial pulsation caused by pulse wave propagation is an unlikely origin of this hypothetical driving force. However, we further show that such pulsation may still lead to fast para-arterial solute transport through dispersion, that is, through the combined effect of local mixing and diffusion in the para-arterial space.

14.
ASAIO J ; 51(5): 618-28, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16322728

RESUMO

In pediatric ventricular assist device (VAD) design, the process of matching device characteristics and dimensions to the relevant disease conditions poses a formidable challenge because the disease spectrum is more highly varied than for adult applications. One example arises with single-ventricle congenital defects, which demand palliative surgeries that create elevated systemic venous pressure and altered pulmonary hemodynamics. Substituting a mechanical pump as a right ventricle has long been proposed to eliminate the associated early and postoperative anomalies. A pulsatile lumped-parameter model of the single-ventricle circulation was developed to guide the preliminary design studies. Two special modules, the pump characteristics and the total cavopulmonary connection (TCPC) module, are introduced. The TCPC module incorporates the results of three-dimensional patient-specific computational fluid dynamics calculations, where the pressure drop in the TCPC anastomosis is calculated at the equal vascular lung resistance operating point for different cardiac outputs at a steady 60/40 inferior vena cava/superior vena cava flow split. Preliminary results obtained with the adult parameters are presented with no ventricle remodeling or combined larger-size single ventricle. A detailed literature review of single-ventricle function is provided. Coupling a continuous pump to the single-ventricle circulation brought both the pulmonary and systemic venous pressures back to manageable levels. Selected VADs provided an acceptable cardiac output trace of the single left ventricle, after initial transients. Remodeling of the systemic venous compliance plays a critical role in performance and is included in this study. Pulsatile operation mode with rotational speed regulation highlighted the importance of TCPC and pulmonary artery compliances. Four different pumps and three patient-specific anatomical TCPC pathologies were studied. Magnitudes of the equivalent TCPC resistances were found to be comparable to the vascular resistances of the normal baseline circulation, significantly affecting both the VAD design and hemodynamics.


Assuntos
Simulação por Computador , Técnica de Fontan , Derivação Cardíaca Direita/instrumentação , Coração Auxiliar , Anastomose Cirúrgica , Criança , Complacência (Medida de Distensibilidade) , Cardiopatias Congênitas/cirurgia , Ventrículos do Coração/anormalidades , Hemodinâmica , Humanos , Modelos Cardiovasculares , Artéria Pulmonar/cirurgia , Fluxo Pulsátil , Literatura de Revisão como Assunto , Rotação , Veia Cava Inferior/cirurgia , Veia Cava Superior/cirurgia
16.
Sci Rep ; 5: 15024, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26463008

RESUMO

The brain possesses an intricate network of interconnected fluid pathways that are vital to the maintenance of its homeostasis. With diffusion being the main mode of solute transport in cerebral tissue, it is not clear how bulk flow through these pathways is involved in the removal of metabolites. In this computational study, we show that networks of astrocytes may contribute to the passage of solutes between tissue and paravascular spaces (PVS) by serving as low resistance pathways to bulk water flow. The astrocyte networks are connected through aquaporin-4 (AQP4) water channels with a parallel, extracellular route carrying metabolites. Inhibition of the intracellular route by deletion of AQP4 causes a reduction of bulk flow between tissue and PVS, leading to reduced metabolite clearance into the venous PVS or, as observed in animal studies, a reduction of tracer influx from arterial PVS into the brain tissue.


Assuntos
Aquaporina 4/metabolismo , Astrócitos/metabolismo , Água Corporal/metabolismo , Encéfalo/metabolismo , Modelos Neurológicos , Rede Nervosa/metabolismo , Simulação por Computador , Ativação do Canal Iônico/fisiologia , Taxa de Depuração Metabólica
17.
J R Soc Interface ; 11(94): 20131189, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24621815

RESUMO

While there is growing experimental evidence that cerebrospinal fluid (CSF) flow induced by the beating of ependymal cilia is an important factor for neuronal guidance, the respective contribution of vascular pulsation-driven macroscale oscillatory CSF flow remains unclear. This work uses computational fluid dynamics to elucidate the interplay between macroscale and cilia-induced CSF flows and their relative impact on near-wall dynamics. Physiological macroscale CSF dynamics are simulated in the ventricular space using subject-specific anatomy, wall motion and choroid plexus pulsations derived from magnetic resonance imaging. Near-wall flow is quantified in two subdomains selected from the right lateral ventricle, for which dynamic boundary conditions are extracted from the macroscale simulations. When cilia are neglected, CSF pulsation leads to periodic flow reversals along the ventricular surface, resulting in close to zero time-averaged force on the ventricle wall. The cilia promote more aligned wall shear stresses that are on average two orders of magnitude larger compared with those produced by macroscopic pulsatile flow. These findings indicate that CSF flow-mediated neuronal guidance is likely to be dominated by the action of the ependymal cilia in the lateral ventricles, whereas CSF dynamics in the centre regions of the ventricles is driven predominantly by wall motion and choroid plexus pulsation.


Assuntos
Líquido Cefalorraquidiano/metabolismo , Plexo Corióideo/fisiologia , Epêndima/fisiologia , Fluxo Pulsátil/fisiologia , Adulto , Cílios/fisiologia , Feminino , Humanos
18.
J Thorac Cardiovasc Surg ; 148(4): 1481-9, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24507891

RESUMO

OBJECTIVES: This study sought to quantify average hemodynamic metrics of the Fontan connection as reference for future investigations, compare connection types (intra-atrial vs extracardiac), and identify functional correlates using computational fluid dynamics in a large patient-specific cohort. Fontan hemodynamics, particularly power losses, are hypothesized to vary considerably among patients with a single ventricle and adversely affect systemic hemodynamics and ventricular function if suboptimal. METHODS: Fontan connection models were created from cardiac magnetic resonance scans for 100 patients. Phase velocity cardiac magnetic resonance in the aorta, vena cavae, and pulmonary arteries was used to prescribe patient-specific time-averaged flow boundary conditions for computational fluid dynamics with a customized, validated solver. Comparison with 4-dimensional cardiac magnetic resonance velocity data from selected patients was used to provide additional verification of simulations. Indexed Fontan power loss, connection resistance, and hepatic flow distribution were quantified and correlated with systemic patient characteristics. RESULTS: Indexed power loss varied by 2 orders of magnitude, whereas, on average, Fontan resistance was 15% to 20% of published values of pulmonary vascular resistance in single ventricles. A significant inverse relationship was observed between indexed power loss and both systemic venous flow and cardiac index. Comparison by connection type showed no differences between intra-atrial and extracardiac connections. Instead, the least efficient connections revealed adverse consequences from localized Fontan pathway stenosis. CONCLUSIONS: Fontan power loss varies from patient to patient, and elevated levels are correlated with lower systemic flow and cardiac index. Fontan connection type does not influence hemodynamic efficiency, but an undersized or stenosed Fontan pathway or pulmonary arteries can be highly dissipative.


Assuntos
Técnica de Fontan/métodos , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/cirurgia , Hemodinâmica , Imageamento por Ressonância Magnética/métodos , Modelos Cardiovasculares , Criança , Feminino , Hemorreologia , Humanos , Masculino
19.
J Neurosurg ; 119(6): 1511-9, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24010973

RESUMO

OBJECT: The treatment of hydrocephalus requires insight into the intracranial dynamics in the patient. Resistance to CSF outflow (R0) is a clinically obtainable parameter of intracranial fluid dynamics that quantifies the apparent resistance to CSF absorption. It is used as a criterion for the selection of shunt candidates and serves as an indicator of shunt performance. The R0 is obtained clinically by performing 1 of 3 infusion tests: constant flow, constant pressure, or bolus infusion. Among these, the bolus infusion method has the shortest examination times and provides the shortest time of exposure of patients to artificially increased intracranial pressure (ICP) levels. However, for unknown reasons, the bolus infusion method systematically underestimates the R0. Here, the authors have tested and verified the hypothesis that this underestimation is due to lack of accounting for viscoelasticity of the craniospinal space in the calculation of the R0. METHODS: The authors developed a phantom model of the human craniospinal space in order to reproduce in vivo pressure-volume (PV) relationships during infusion testing. The phantom model followed the Marmarou exponential PV equation and also included a viscoelastic response to volume changes. Parameters of intracranial fluid dynamics, such as the R0, could be controlled and set independently. In addition to the phantom model, the authors designed a computational framework for virtual infusion testing in which viscoelasticity can be turned on or off in a controlled manner. Constant flow, constant pressure, and bolus infusion tests were performed on the phantom model, as well as on the virtual computational platform, using standard clinical protocols. Values for the R0 were derived from each infusion test by using both a standard method based on the Marmarou PV equation and a novel method based on a system identification approach that takes into account viscoelastic behavior. RESULTS: Experiments with the phantom model confirmed clinical observations that both the constant flow and constant pressure infusion tests, but not the bolus infusion test, yield correct R0 values when they are determined with the standard method according to Marmarou. Equivalent results were obtained using the computational framework. When the novel system identification approach was used to determine the R0, all of the 3 infusion tests yielded correct values for the R0. CONCLUSIONS" The authors' investigations demonstrate that intracranial dynamics have a substantial viscoelastic component. When this viscoelastic component is taken into account in calculations, the R0, is no longer underestimated in the bolus infusion test.


Assuntos
Pressão do Líquido Cefalorraquidiano/fisiologia , Líquido Cefalorraquidiano/fisiologia , Hidrocefalia/líquido cefalorraquidiano , Hidrodinâmica , Modelos Biológicos , Humanos
20.
J Thorac Cardiovasc Surg ; 145(3): 663-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22560957

RESUMO

BACKGROUND: Using a bifurcated Y-graft as the Fontan baffle is hypothesized to streamline and improve flow dynamics through the total cavopulmonary connection (TCPC). This study conducted numerical simulations to evaluate this hypothesis using postoperative data from 5 patients. METHODS: Patients were imaged with cardiac magnetic resonance or computed tomography after receiving a bifurcated aorto-iliac Y-graft as their Fontan conduit. Numerical simulations were performed using in vivo flow rates, as well as 2 levels of simulated exercise. Two TCPC models were virtually created for each patient to serve as the basis for hemodynamic comparison. Comparative metrics included connection flow resistance and inferior vena caval flow distribution. RESULTS: Results demonstrate good hemodynamic outcomes for the Y-graft options. The consistency of inferior vena caval flow distribution was improved over TCPC controls, whereas the connection resistances were generally no different from the TCPC values, except for 1 case in which there was a marked improvement under both resting and exercise conditions. Examination of the connection hemodynamics as they relate to surgical Y-graft implementation identified critical strategies and modifications that are needed to potentially realize the theoretical efficiency of such bifurcated connection designs. CONCLUSIONS: Five consecutive patients received a Y-graft connection to complete their Fontan procedure with positive hemodynamic results. Refining the surgical technique for implementation should result in further energetic improvements that may help improve long-term outcomes.


Assuntos
Prótese Vascular , Técnica de Fontan/métodos , Cardiopatias Congênitas/cirurgia , Hemodinâmica/fisiologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Técnica de Fontan/instrumentação , Humanos , Hidrodinâmica , Imageamento por Ressonância Magnética , Masculino , Modelos Cardiovasculares , Politetrafluoretileno , Desenho de Prótese , Fluxo Sanguíneo Regional , Tomografia Computadorizada por Raios X , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA