Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 615(7952): 507-516, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36890224

RESUMO

Although chimeric antigen receptor (CAR) T cells have altered the treatment landscape for B cell malignancies, the risk of on-target, off-tumour toxicity has hampered their development for solid tumours because most target antigens are shared with normal cells1,2. Researchers have attempted to apply Boolean-logic gating to CAR T cells to prevent toxicity3-5; however, a truly safe and effective logic-gated CAR has remained elusive6. Here we describe an approach to CAR engineering in which we replace traditional CD3ζ domains with intracellular proximal T cell signalling molecules. We show that certain proximal signalling CARs, such as a ZAP-70 CAR, can activate T cells and eradicate tumours in vivo while bypassing upstream signalling proteins, including CD3ζ. The primary role of ZAP-70 is to phosphorylate LAT and SLP-76, which form a scaffold for signal propagation. We exploited the cooperative role of LAT and SLP-76 to engineer logic-gated intracellular network (LINK) CAR, a rapid and reversible Boolean-logic AND-gated CAR T cell platform that outperforms other systems in both efficacy and prevention of on-target, off-tumour toxicity. LINK CAR will expand the range of molecules that can be targeted with CAR T cells, and will enable these powerful therapeutic agents to be used for solid tumours and diverse diseases such as autoimmunity7 and fibrosis8. In addition, this work shows that the internal signalling machinery of cells can be repurposed into surface receptors, which could open new avenues for cellular engineering.


Assuntos
Engenharia Celular , Imunoterapia Adotiva , Lógica , Neoplasias , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Transdução de Sinais , Linfócitos T , Humanos , Engenharia Celular/métodos , Imunoterapia Adotiva/efeitos adversos , Leucemia de Células B , Linfoma de Células B , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo
2.
J Cell Sci ; 134(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34714332

RESUMO

Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.


Assuntos
Polaridade Celular , Junções Intercelulares , Animais , Adesão Celular , Células Epiteliais , Epitélio , Humanos
3.
Dig Dis Sci ; 64(7): 2059, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30778870

RESUMO

The original version of the article unfortunately contained an error in article title. The corrected title is 'Fecal Microbiota Transplantation Capsules with Targeted Colonic Versus Gastric Delivery in Recurrent Clostridium difficile Infection: A Comparative Cohort Analysis of High and Low Dose'.

4.
Dig Dis Sci ; 64(6): 1672-1678, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30519847

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) is an effective therapy for recurrent Clostridium. difficile infection (rCDI). FMT capsules have emerged, and it is unknown if delivery location and dose impact efficacy. METHODS: We compared two cohorts of patients receiving two capsule formulations: gastric release (FMTgr) and targeted colonic release (FMTcr) at two different sites. Cohort A received FMTgr at (1) high dose: 60 capsules and low dose: 30 capsules. Patients in Cohort B received FMTcr at (1) high dose: 30 capsules (2) low dose: 10 capsules. Clinical cure rates and adverse events were monitored through week 8. Paired t-tests were used to compare diversity pre- and post-FMT. RESULTS: 51 rCDI patients were enrolled. Cohort A contained n = 20 and Cohort B contained n = 31. Overall cure at week 8 for FMTgr was 75% (15/20) compared to 80.6% for FMTcr, (25/31), p = 0.63. Both formulations were safe with no serious adverse events. FMTcr was superior at increasing gut microbial diversity. DISCUSSION: To our knowledge, this is the first study to compare targeted delivery of FMT capsules. While both capsules were safe and efficacious, microbial engraftment patterns were superior in FMTcr.


Assuntos
Infecções por Clostridium/terapia , Colo/microbiologia , Transplante de Microbiota Fecal/instrumentação , Microbioma Gastrointestinal , Estômago/microbiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Cápsulas , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Humanos , Concentração de Íons de Hidrogênio , Masculino , Pessoa de Meia-Idade , Indução de Remissão , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
5.
Biomaterials ; 170: 127-135, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29660635

RESUMO

Covalently cross-linked gels are utilized in a broad range of biomedical applications though their synthesis often compromises easy implementation. Cross-linking reactions commonly utilize catalysts or conditions that can damage biologics and sensitive compounds, producing materials that require extensive post processing to achieve acceptable biocompatibility. As an alternative, we report a batch synthesis platform to produce covalently cross-linked materials appropriate for direct biomedical application enabled by green chemistry and commonly available food grade ingredients. Using caffeine, a mild base, to catalyze anhydrous carboxylate ring-opening of diglycidyl-ether functionalized monomers with citric acid as a tri-functional crosslinking agent we introduce a novel poly(ester-ether) gel synthesis platform. We demonstrate that biocompatible Caffeine Catalyzed Gels (CCGs) exhibit dynamic physical, chemical, and mechanical properties, which can be tailored in shape, surface texture, solvent response, cargo release, shear and tensile strength, among other potential attributes. The demonstrated versatility, low cost and facile synthesis of these CCGs renders them appropriate for a broad range of customized engineering applications including drug delivery constructs, tissue engineering scaffolds, and medical devices.


Assuntos
Cafeína/farmacologia , Géis/química , Animais , Cafeína/química , Catálise , Linhagem Celular , Força Compressiva , Liberação Controlada de Fármacos , Feminino , Humanos , Cinética , Ratos Sprague-Dawley , Resistência à Tração , Água/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA