Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
BMC Genomics ; 25(1): 359, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605287

RESUMO

Inherited hearing impairment is a remarkably heterogeneous monogenic condition, involving hundreds of genes, most of them with very small (< 1%) epidemiological contributions. The exception is GJB2, the gene encoding connexin-26 and underlying DFNB1, which is the most frequent type of autosomal recessive non-syndromic hearing impairment (ARNSHI) in most populations (up to 40% of ARNSHI cases). DFNB1 is caused by different types of pathogenic variants in GJB2, but also by large deletions that keep the gene intact but remove an upstream regulatory element that is essential for its expression. Such large deletions, found in most populations, behave as complete loss-of-function variants, usually associated with a profound hearing impairment. By using CRISPR-Cas9 genetic edition, we have generated a murine model (Dfnb1em274) that reproduces the most frequent of those deletions, del(GJB6-D13S1830). Dfnb1em274 homozygous mice are viable, bypassing the embryonic lethality of the Gjb2 knockout, and present a phenotype of profound hearing loss (> 90 dB SPL) that correlates with specific structural abnormalities in the cochlea. We show that Gjb2 expression is nearly abolished and its protein product, Cx26, is nearly absent all throughout the cochlea, unlike previous conditional knockouts in which Gjb2 ablation was not obtained in all cell types. The Dfnb1em274 model recapitulates the clinical presentation of patients harbouring the del(GJB6-D13S1830) variant and thus it is a valuable tool to study the pathological mechanisms of DFNB1 and to assay therapies for this most frequent type of human ARNSHI.


Assuntos
Conexina 30 , Perda Auditiva , Animais , Camundongos , Conexina 26/genética , Conexina 30/genética , Modelos Animais de Doenças , Perda Auditiva/genética , Mutação , Fenótipo
2.
Ear Hear ; 45(1): 250-256, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37677959

RESUMO

OBJECTIVES: Attenuation of otoacoustic emissions over time has been reported for many patients with hearing impairment harboring mutations in the OTOF gene. In this study, the time course of changes of distortion product otoacoustic emissions (DPOAEs) has been analyzed in a cohort of patients in the light of tympanometry results. DESIGN: The changes of DPOAEs in 16 patients with OTOF -related hearing impairment were retrospectively analyzed. RESULTS: All but one subject showed DPOAEs bilaterally at the time of diagnosis. Three patients diagnosed as adults still had DPOAEs at ages of 27, 31, and 47 years, respectively. Follow-up was available for 7 children diagnosed at the age of 1 to 3 years, who still showed preservation of DPOAEs at ages of 5 to 16 years. The responses were absent or attenuated in amplitude at some follow-up appointments in association with type B or C tympanograms. CONCLUSIONS: DPOAEs are preserved much longer than expected in a cohort of patients with OTOF -related hearing impairment. The previously reported loss of DPOAEs may have been caused in some children by increased middle ear impedance due to otitis media.


Assuntos
Perda Auditiva , Adulto , Criança , Humanos , Lactente , Pré-Escolar , Estudos Retrospectivos , Perda Auditiva/diagnóstico , Emissões Otoacústicas Espontâneas/fisiologia , Testes de Impedância Acústica , Orelha Média , Audiometria de Tons Puros , Limiar Auditivo/fisiologia , Proteínas de Membrana
3.
Cell Mol Life Sci ; 80(12): 367, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37987826

RESUMO

BACKGROUND: Huntington's Disease (HD) is a disorder that affects body movements. Altered glutamatergic innervation of the striatum is a major hallmark of the disease. Approximately 30% of those glutamatergic inputs come from thalamic nuclei. Foxp2 is a transcription factor involved in cell differentiation and reported low in patients with HD. However, the role of the Foxp2 in the thalamus in HD remains unexplored. METHODS: We used two different mouse models of HD, the R6/1 and the HdhQ111 mice, to demonstrate a consistent thalamic Foxp2 reduction in the context of HD. We used in vivo electrophysiological recordings, microdialysis in behaving mice and rabies virus-based monosynaptic tracing to study thalamo-striatal and thalamo-cortical synaptic connectivity in R6/1 mice. Micro-structural synaptic plasticity was also evaluated in the striatum and cortex of R6/1 mice. We over-expressed Foxp2 in the thalamus of R6/1 mice or reduced Foxp2 in the thalamus of wild type mice to evaluate its role in sensory and motor skills deficiencies, as well as thalamo-striatal and thalamo-cortical connectivity in such mouse models. RESULTS: Here, we demonstrate in a HD mouse model a clear and early thalamo-striatal aberrant connectivity associated with a reduction of thalamic Foxp2 levels. Recovering thalamic Foxp2 levels in the mouse rescued motor coordination and sensory skills concomitant with an amelioration of neuropathological features and with a repair of the structural and functional connectivity through a restoration of neurotransmitter release. In addition, reduction of thalamic Foxp2 levels in wild type mice induced HD-like phenotypes. CONCLUSIONS: In conclusion, we show that a novel identified thalamic Foxp2 dysregulation alters basal ganglia circuits implicated in the pathophysiology of HD.


Assuntos
Doença de Huntington , Transtornos Motores , Humanos , Animais , Camundongos , Tálamo , Corpo Estriado , Movimento , Modelos Animais de Doenças , Proteínas Repressoras , Fatores de Transcrição Forkhead/genética
4.
Neurobiol Dis ; 173: 105854, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36029989

RESUMO

Huntington's Disease (HD) is a devastating disorder characterized by a triad of motor, psychiatric and cognitive manifestations. Psychiatric and emotional symptoms appear at early stages of the disease which are consistently described by patients and caregivers among the most disabling. Here, we show for the first time that Foxp2 is strongly associated with some psychiatric-like disturbances in the R6/1 mouse model of HD. First, 4-week-old (juvenile) R6/1 mice behavioral phenotype was characterized by an increased impulsive-like behavior and less aggressive-like behavior. In this line, we identified an early striatal downregulation of Foxp2 protein starting as soon as at postnatal day 15 that could explain such deficiencies. Interestingly, the rescue of striatal Foxp2 levels from postnatal stages completely reverted the impulsivity-phenotype and partially the social impairments concomitant with a rescue of dendritic spine pathology. A mass spectrometry study indicated that the rescue of spine loss was associated with an improvement of several altered proteins related with cytoskeleton dynamics. Finally, we reproduced and mimicked the impulsivity and social deficits in wild type mice by reducing their striatal Foxp2 expression from postnatal stages. Overall, these results imply that early postnatal reduction of Foxp2 might contribute to the appearance of some of the early psychiatric symptoms in HD.


Assuntos
Doença de Huntington , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Doença de Huntington/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Proteínas Repressoras/genética
5.
Hum Genet ; 141(3-4): 683-696, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35044523

RESUMO

Hearing impairment not etiologically associated with clinical signs in other organs (non-syndromic) is genetically heterogeneous, so that over 120 genes are currently known to be involved. The frequency of mutations in each gene and the most frequent mutations vary throughout populations. Here we review the genetic etiology of non-syndromic hearing impairment (NSHI) in Europe. Over the years, epidemiological data were scarce because of the large number of involved genes, whose screening was not cost-effective until implementation of massively parallel DNA sequencing. In Europe, the most common form of autosomal recessive NSHI is DFNB1, which accounts for 11-57% of the cases. Mutations in STRC account for 16% of the recessive cases, and only a few more (MYO15A, MYO7A, LOXHD1, USH2A, TMPRSS3, CDH23, TMC1, OTOF, OTOA, SLC26A4, ADGRV1 and TECTA) have contributions higher than 2%. As regards autosomal-dominant NSHI, DFNA22 (MYO6) and DFNA8/12 (TECTA) represent the most common forms, accounting for 21% and 18% of elucidated cases, respectively. The contribution of ACTG1 and WFS1 drops to 9% in both cases, followed by POU4F3 (6.5%), MYO7A (5%), MYH14 and COL11A2 (4% each). Four additional genes contribute 2.5% each one (MITF, KCNQ4, EYA4, SOX10) and the remaining are residually represented. X-linked hearing loss and maternally-inherited NSHI have minor contributions in most countries. Further knowledge on the genetic epidemiology of NSHI in Europe needs a standardization of the experimental approaches and a stratification of the results according to clinical features, familial history and patterns of inheritance, to facilitate comparison between studies.


Assuntos
Síndromes de Usher , Sequência de Bases , Surdez , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Membrana/genética , Mutação , Proteínas de Neoplasias/genética , Análise de Sequência de DNA , Serina Endopeptidases/genética , Transativadores/genética , Síndromes de Usher/genética
6.
Am J Hum Genet ; 103(1): 74-88, 2018 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-29961571

RESUMO

In a Dutch consanguineous family with recessively inherited nonsyndromic hearing impairment (HI), homozygosity mapping combined with whole-exome sequencing revealed a MPZL2 homozygous truncating variant, c.72del (p.Ile24Metfs∗22). By screening a cohort of phenotype-matched subjects and a cohort of HI subjects in whom WES had been performed previously, we identified two additional families with biallelic truncating variants of MPZL2. Affected individuals demonstrated symmetric, progressive, mild to moderate sensorineural HI. Onset of HI was in the first decade, and high-frequency hearing was more severely affected. There was no vestibular involvement. MPZL2 encodes myelin protein zero-like 2, an adhesion molecule that mediates epithelial cell-cell interactions in several (developing) tissues. Involvement of MPZL2 in hearing was confirmed by audiometric evaluation of Mpzl2-mutant mice. These displayed early-onset progressive sensorineural HI that was more pronounced in the high frequencies. Histological analysis of adult mutant mice demonstrated an altered organization of outer hair cells and supporting cells and degeneration of the organ of Corti. In addition, we observed mild degeneration of spiral ganglion neurons, and this degeneration was most pronounced at the cochlear base. Although MPZL2 is known to function in cell adhesion in several tissues, no phenotypes other than HI were found to be associated with MPZL2 defects. This indicates that MPZL2 has a unique function in the inner ear. The present study suggests that deleterious variants of Mplz2/MPZL2 affect adhesion of the inner-ear epithelium and result in loss of structural integrity of the organ of Corti and progressive degeneration of hair cells, supporting cells, and spiral ganglion neurons.


Assuntos
Moléculas de Adesão Celular/genética , Células Ciliadas Auditivas/patologia , Perda Auditiva Neurossensorial/genética , Audição/genética , Animais , Adesão Celular/genética , Cóclea/patologia , Surdez/genética , Epitélio/patologia , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mutação/genética , Neurônios/patologia , Gânglio Espiral da Cóclea/patologia
7.
Ear Hear ; 42(6): 1627-1639, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33908410

RESUMO

OBJECTIVES: Congenital profound hearing loss with preserved cochlear outer hair cell activity (otoacoustic emissions and cochlear microphonic) is the most common phenotype associated with mutations in the OTOF gene. The aim of this study was to investigate the pathophysiological mechanisms behind the auditory dysfunction in five patients (2 adults and 3 children) carrying biallelic mutations in OTOF, who showed an uncommon phenotype of mild hearing impairment associated with severe difficulties in speech perception and delay of language development. DESIGN: Patients underwent audiometric assessment with pure-tone and speech perception evaluation, and otoacoustic emissions and auditory brainstem response recording. Cochlear potentials were recorded in all subjects through transtympanic electrocochleography in response to clicks delivered in the free field from 120 to 60 dB peak equivalent SPL and were compared to recordings obtained from 20 normally hearing controls and from eight children with profound deafness due to mutations in the OTOF gene. Three patients out of five underwent unilateral cochlear implantation. Speech perception measures and electrically evoked auditory nerve potentials were obtained within 1 year of cochlear implant use. RESULTS: Pathogenic mutations in the two alleles of OTOF were found in all five patients, and five novel mutations were identified. Hearing thresholds indicated mild hearing loss in four patients and moderate hearing loss in one. Distortion product otoacoustic emissions were recorded in all subjects, whereas auditory brainstem responses were absent in all but two patients, who showed a delayed wave V in one ear. In electrocochleography recordings, cochlear microphonics and summating potentials showed normal latency and peak amplitude, consistently with preservation of both outer and inner hair cell activity. In contrast, the neural compound action potential recorded in normally hearing controls was replaced by a prolonged, low-amplitude negative response. No differences in cochlear potentials were found between OTOF subjects showing mild or profound hearing loss. Electrical stimulation through the cochlear implant improved speech perception and restored synchronized auditory nerve responses in all cochlear implant recipients. CONCLUSIONS: These findings indicate that disordered synchrony in auditory fiber activity underlies the impairment of speech perception in patients carrying biallelic mutations in OTOF gene who show a stable phenotype of mild hearing loss. Abnormal nerve synchrony with preservation of hearing sensitivity is consistent with selective impairment of vesicle replenishment at the ribbon synapses with relative preservation of synaptic exocytosis. Cochlear implants are effective in restoring speech perception and synchronous activation of the auditory pathway by directly stimulating auditory fibers.


Assuntos
Perda Auditiva , Proteínas de Membrana , Percepção da Fala , Limiar Auditivo/fisiologia , Cóclea , Nervo Coclear , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Humanos , Proteínas de Membrana/genética , Mutação , Emissões Otoacústicas Espontâneas/fisiologia , Percepção da Fala/fisiologia
8.
EMBO J ; 35(23): 2536-2552, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458190

RESUMO

The transmembrane recognition complex (TRC40) pathway mediates the insertion of tail-anchored (TA) proteins into membranes. Here, we demonstrate that otoferlin, a TA protein essential for hair cell exocytosis, is inserted into the endoplasmic reticulum (ER) via the TRC40 pathway. We mutated the TRC40 receptor tryptophan-rich basic protein (Wrb) in hair cells of zebrafish and mice and studied the impact of defective TA protein insertion. Wrb disruption reduced otoferlin levels in hair cells and impaired hearing, which could be restored in zebrafish by transgenic Wrb rescue and otoferlin overexpression. Wrb-deficient mouse inner hair cells (IHCs) displayed normal numbers of afferent synapses, Ca2+ channels, and membrane-proximal vesicles, but contained fewer ribbon-associated vesicles. Patch-clamp of IHCs revealed impaired synaptic vesicle replenishment. In vivo recordings from postsynaptic spiral ganglion neurons showed a use-dependent reduction in sound-evoked spiking, corroborating the notion of impaired IHC vesicle replenishment. A human mutation affecting the transmembrane domain of otoferlin impaired its ER targeting and caused an auditory synaptopathy. We conclude that the TRC40 pathway is critical for hearing and propose that otoferlin is an essential substrate of this pathway in hair cells.


Assuntos
ATPases Transportadoras de Arsenito/metabolismo , Exocitose , Células Ciliadas Auditivas/metabolismo , Audição , Proteínas de Membrana/metabolismo , Proteínas Nucleares/metabolismo , Animais , Técnicas de Inativação de Genes , Teste de Complementação Genética , Humanos , Camundongos , Proteínas Nucleares/genética , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
9.
J Transl Med ; 17(1): 290, 2019 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-31455392

RESUMO

BACKGROUND: Perrault syndrome is a rare autosomal recessive disorder that is characterized by the association of sensorineural hearing impairment and ovarian dysgenesis in females, whereas males have only hearing impairment. In some cases, patients present with a diversity of neurological signs. To date, mutations in six genes are known to cause Perrault syndrome, but they do not explain all clinically-diagnosed cases. In addition, the number of reported cases and the spectra of mutations are still small to establish conclusive genotype-phenotype correlations. METHODS: Affected siblings from family SH19, who presented with features that were suggestive of Perrault syndrome, were subjected to audiological, neurological and gynecological examination. The genetic study included genotyping and haplotype analysis for microsatellite markers close to the genes involved in Perrault syndrome, whole-exome sequencing, and Sanger sequencing of the coding region of the TWNK gene. RESULTS: Three siblings from family SH19 shared similar clinical features: childhood-onset bilateral sensorineural hearing impairment, which progressed to profound deafness in the second decade of life; neurological signs (spinocerebellar ataxia, polyneuropathy), with onset in the fourth decade of life in the two females and at age 20 years in the male; gonadal dysfunction with early cessation of menses in the two females. The genetic study revealed two compound heterozygous pathogenic mutations in the TWNK gene in the three affected subjects: c.85C>T (p.Arg29*), previously reported in a case of hepatocerebral syndrome; and a novel missense mutation, c.1886C>T (p.Ser629Phe). Mutations segregated in the family according to an autosomal recessive inheritance pattern. CONCLUSIONS: Our results further illustrate the utility of genetic testing as a tool to confirm a tentative clinical diagnosis of Perrault syndrome. Studies on genotype-phenotype correlation from the hitherto reported cases indicate that patients with Perrault syndrome caused by TWNK mutations will manifest neurological signs in adulthood. Molecular and clinical characterization of novel cases of recessive disorders caused by TWNK mutations is strongly needed to get further insight into the genotype-phenotype correlations of a phenotypic continuum encompassing Perrault syndrome, infantile-onset spinocerebellar ataxia, and hepatocerebral syndrome.


Assuntos
DNA Helicases/genética , Genes Recessivos , Disgenesia Gonadal 46 XX/complicações , Disgenesia Gonadal 46 XX/genética , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/genética , Proteínas Mitocondriais/genética , Mutação/genética , Doenças do Sistema Nervoso/complicações , Adolescente , Adulto , Sequência de Aminoácidos , Sequência de Bases , Pré-Escolar , DNA Helicases/química , Éxons/genética , Feminino , Disgenesia Gonadal 46 XX/diagnóstico por imagem , Perda Auditiva Neurossensorial/diagnóstico por imagem , Heterozigoto , Humanos , Íntrons/genética , Imageamento por Ressonância Magnética , Masculino , Repetições de Microssatélites/genética , Proteínas Mitocondriais/química , Linhagem , Adulto Jovem
10.
Genet Med ; 21(11): 2442-2452, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31160754

RESUMO

PURPOSE: Pathogenic variants in GJB2 are the most common cause of autosomal recessive sensorineural hearing loss. The classification of c.101T>C/p.Met34Thr and c.109G>A/p.Val37Ile in GJB2 are controversial. Therefore, an expert consensus is required for the interpretation of these two variants. METHODS: The ClinGen Hearing Loss Expert Panel collected published data and shared unpublished information from contributing laboratories and clinics regarding the two variants. Functional, computational, allelic, and segregation data were also obtained. Case-control statistical analyses were performed. RESULTS: The panel reviewed the synthesized information, and classified the p.Met34Thr and p.Val37Ile variants utilizing professional variant interpretation guidelines and professional judgment. We found that p.Met34Thr and p.Val37Ile are significantly overrepresented in hearing loss patients, compared with population controls. Individuals homozygous or compound heterozygous for p.Met34Thr or p.Val37Ile typically manifest mild to moderate hearing loss. Several other types of evidence also support pathogenic roles for these two variants. CONCLUSION: Resolving controversies in variant classification requires coordinated effort among a panel of international multi-institutional experts to share data, standardize classification guidelines, review evidence, and reach a consensus. We concluded that p.Met34Thr and p.Val37Ile variants in GJB2 are pathogenic for autosomal recessive nonsyndromic hearing loss with variable expressivity and incomplete penetrance.


Assuntos
Conexinas/genética , Perda Auditiva/genética , Alelos , Estudos de Casos e Controles , Conexina 26/genética , Conexinas/metabolismo , Surdez/genética , Feminino , Perda Auditiva Neurossensorial/genética , Humanos , Masculino , Mutação , Polimorfismo de Nucleotídeo Único/genética
11.
Am J Hum Genet ; 91(5): 883-9, 2012 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-23122587

RESUMO

Already 40 genes have been identified for autosomal-recessive nonsyndromic hearing impairment (arNSHI); however, many more genes are still to be identified. In a Dutch family segregating arNSHI, homozygosity mapping revealed a 2.4 Mb homozygous region on chromosome 11 in p15.1-15.2, which partially overlapped with the previously described DFNB18 locus. However, no putative pathogenic variants were found in USH1C, the gene mutated in DFNB18 hearing impairment. The homozygous region contained 12 additional annotated genes including OTOG, the gene encoding otogelin, a component of the tectorial membrane. It is thought that otogelin contributes to the stability and strength of this membrane through interaction or stabilization of its constituent fibers. The murine orthologous gene was already known to cause hearing loss when defective. Analysis of OTOG in the Dutch family revealed a homozygous 1 bp deletion, c.5508delC, which leads to a shift in the reading frame and a premature stop codon, p.Ala1838ProfsX31. Further screening of 60 unrelated probands from Spanish arNSHI families detected compound heterozygous OTOG mutations in one family, c.6347C>T (p.Pro2116Leu) and c. 6559C>T (p.Arg2187X). The missense mutation p.Pro2116Leu affects a highly conserved residue in the fourth von Willebrand factor type D domain of otogelin. The subjects with OTOG mutations have a moderate hearing impairment, which can be associated with vestibular dysfunction. The flat to shallow "U" or slightly downsloping shaped audiograms closely resembled audiograms of individuals with recessive mutations in the gene encoding α-tectorin, another component of the tectorial membrane. This distinctive phenotype may represent a clue to orientate the molecular diagnosis.


Assuntos
Genes Recessivos , Perda Auditiva Neurossensorial/genética , Glicoproteínas de Membrana/genética , Mutação , Homozigoto , Humanos , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Irmãos
12.
Pediatr Res ; 78(1): 97-102, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25785835

RESUMO

BACKGROUND: PRPS1 encodes isoform I of phosphoribosylpyrophosphate synthetase (PRS-I), a key enzyme in nucleotide biosynthesis. Different missense mutations in PRPS1 cause a variety of disorders that include PRS-I superactivity, nonsyndromic sensorineural hearing impairment, Charcot-Marie-Tooth disease, and Arts syndrome. It has been proposed that each mutation would result in a specific phenotype, depending on its effects on the structure and function of the enzyme. METHODS: Thirteen Spanish unrelated families segregating X-linked hearing impairment were screened for PRPS1 mutations by Sanger sequencing. In two positive pedigrees, segregation of mutations was studied, and clinical data from affected subjects were compared. RESULTS: We report two novel missense mutations in PRPS1, p.Ile275Thr and p.Gly306Glu, which were found in the propositi of two unrelated Spanish families, both subjects presenting with nonsyndromic hearing impairment. Further investigation revealed syndromic features in other hemizygous carriers from one of the pedigrees. Sequencing of genes that are functionally related to PRPS1 did not reveal any candidate variant that might act as a phenotype modifier. CONCLUSION: This case of intrafamilial phenotypic variation associated with a single PRPS1 mutation complicates the genotype-phenotype correlations, which makes genetic counseling of mutation carriers difficult because of the wide spectrum of severity of the associated disorders.


Assuntos
Aconselhamento Genético , Perda Auditiva/genética , Mutação , Ribose-Fosfato Pirofosfoquinase/genética , Adolescente , Adulto , Sequência de Aminoácidos , Cromossomos Humanos X , Surdez/genética , Saúde da Família , Feminino , Estudos de Associação Genética , Testes Genéticos , Hemizigoto , Heterozigoto , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Homologia de Sequência de Aminoácidos , Espanha
13.
Am J Hum Genet ; 88(5): 621-7, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21549336

RESUMO

The fact that hereditary hearing loss is the most common sensory disorder in humans is reflected by, among other things, an extraordinary allelic and nonallelic genetic heterogeneity. X-chromosomal hearing impairment represents only a minor fraction of all cases. In a study of a Spanish family the locus for one of the X-chromosomal forms was assigned to Xp22 (DFNX4). We mapped the disease locus in the same chromosomal region in a large German pedigree with X-chromosomal nonsyndromic hearing impairment by using genome-wide linkage analysis. Males presented with postlingual hearing loss and onset at ages 3-7, whereas onset in female carriers was in the second to third decades. Targeted DNA capture with high-throughput sequencing detected a nonsense mutation in the small muscle protein, X-linked (SMPX) of affected individuals. We identified another nonsense mutation in SMPX in patients from the Spanish family who were previously analyzed to map DFNX4. SMPX encodes an 88 amino acid, cytoskeleton-associated protein that is responsive to mechanical stress. The presence of Smpx in hair cells and supporting cells of the murine cochlea indicates its role in the inner ear. The nonsense mutations detected in the two families suggest a loss-of-function mechanism underlying this form of hearing impairment. Results obtained after heterologous overexpression of SMPX proteins were compatible with this assumption. Because responsivity to physical force is a characteristic feature of the protein, we propose that long-term maintenance of mechanically stressed inner-ear cells critically depends on SMPX function.


Assuntos
Cromossomos Humanos X/genética , Códon sem Sentido , Perda Auditiva/genética , Proteínas Musculares/genética , Adolescente , Idade de Início , Alelos , Animais , Criança , Pré-Escolar , Cóclea , Orelha Interna/embriologia , Orelha Interna/metabolismo , Feminino , Ligação Genética , Estudo de Associação Genômica Ampla , Células Ciliadas Auditivas/metabolismo , Haplótipos , Células HeLa , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linhagem
14.
Ear Hear ; 35(3): e84-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24378291

RESUMO

OBJECTIVES: Recently, OTOG and OTOGL were identified as human deafness genes. Currently, only four families are known to have autosomal recessive hearing loss based on mutations in these genes. Because the two genes code for proteins (otogelin and otogelin-like) that are strikingly similar in structure and localization in the inner ear, this study is focused on characterizing and comparing the hearing loss caused by mutations in these genes. DESIGN: To evaluate this type of hearing, an extensive set of audiometric and vestibular examinations was performed in the 13 patients from four families. RESULTS: All families show a flat to downsloping configuration of the audiogram with mild to moderate sensorineural hearing loss. Speech recognition scores remain good (>90%). Hearing loss is not significantly different in the four families and the psychophysical test results also do not differ among the families. Vestibular examinations show evidence for vestibular hyporeflexia. CONCLUSION: Because otogelin and otogelin-like are localized in the tectorial membrane, one could expect a cochlear conductive hearing loss, as was previously shown in DFNA13 (COL11A2) and DFNA8/12 (TECTA) patients. Results of psychophysical examinations, however, do not support this. Furthermore, the authors conclude that there are no phenotypic differences between hearing loss based on mutations in OTOG or OTOGL. This phenotype description will facilitate counseling of hearing loss caused by defects in either of these two genes.


Assuntos
Perda Auditiva Neurossensorial/genética , Glicoproteínas de Membrana/genética , Proteínas de Membrana/genética , Emissões Otoacústicas Espontâneas/genética , Reflexo Anormal/genética , Reflexo Vestíbulo-Ocular/genética , Adolescente , Adulto , Audiometria de Tons Puros , Criança , Pré-Escolar , Feminino , Genótipo , Humanos , Masculino , Mutação , Fenótipo , Reflexo Acústico/genética , Teste do Limiar de Recepção da Fala , Testes de Função Vestibular , Adulto Jovem
15.
Biomedicines ; 11(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38001944

RESUMO

Non-syndromic hearing impairment (NSHI) is a very heterogeneous genetic condition, involving over 130 genes. Mutations in GJB2, encoding connexin-26, are a major cause of NSHI (the DFNB1 type), but few other genes have significant epidemiological contributions. Mutations in the STRC gene result in the DFNB16 type of autosomal recessive NSHI, a common cause of moderate hearing loss. STRC is located in a tandem duplicated region that includes the STRCP1 pseudogene, and so it is prone to rearrangements causing structural variations. Firstly, we screened a cohort of 122 Spanish familial cases of non-DFNB1 NSHI with at least two affected siblings and unaffected parents, and with different degrees of hearing loss (mild to profound). Secondly, we screened a cohort of 64 Spanish sporadic non-DFNB1 cases, and a cohort of 35 Argentinean non-DFNB1 cases, all of them with moderate hearing loss. Amplification of marker D15S784, massively parallel DNA sequencing, multiplex ligation-dependent probe amplification and long-range gene-specific PCR followed by Sanger sequencing were used to search and confirm single-nucleotide variants (SNVs) and deletions involving STRC. Causative variants were found in 13 Spanish familial cases (10.7%), 5 Spanish simplex cases (7.8%) and 2 Argentinean cases (5.7%). In all, 34 deleted alleles and 6 SNVs, 5 of which are novel. All affected subjects had moderate hearing impairment. Our results further support this strong genotype-phenotype correlation and highlight the significant contribution of STRC mutations to moderate NSHI in the Spanish population.

17.
Genes (Basel) ; 13(5)2022 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-35627237

RESUMO

The inner ear is a complex structure at the cellular and molecular levels [...].


Assuntos
Orelha Interna , Perda Auditiva , Perda Auditiva/genética , Humanos
18.
Front Pharmacol ; 13: 791666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281935

RESUMO

Glycogen synthase kinase 3ß (GSK3ß) is a core protein, with a relevant role in many neurodegenerative disorders including Alzheimer's disease. The enzyme has been largely studied as a potential therapeutic target for several neurological diseases. Unfortunately, preclinical and clinical studies with several GSK3ß inhibitors have failed due to many reasons such as excessive toxicity or lack of effects in human subjects. We previously reported that meridianins are potent GSK3ß inhibitors without altering neuronal viability. In the present work, we examine whether meridianins are capable to inhibit neural GSK3ß in vivo and if such inhibition induces improvements in the 5xFAD mouse model of Alzheimer's Disease. Direct administration of meridianins in the third ventricle of 5xFAD mice induced robust improvements of recognition memory and cognitive flexibility as well as a rescue of the synaptic loss and an amelioration of neuroinflammatory processes. In summary, our study points out meridianins as a potential compound to treat neurodegenerative disorders associated with an hyperactivation of GSK3ß such as Alzheimer's disease.

19.
Genes (Basel) ; 13(1)2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35052489

RESUMO

Pathogenic variants in the PJVK gene cause the DFNB59 type of autosomal recessive non-syndromic hearing impairment (AR-NSHI). Phenotypes are not homogeneous, as a few subjects show auditory neuropathy spectrum disorder (ANSD), while others show cochlear hearing loss. The numbers of reported cases and pathogenic variants are still small to establish accurate genotype-phenotype correlations. We investigated a cohort of 77 Spanish familial cases of AR-NSHI, in whom DFNB1 had been excluded, and a cohort of 84 simplex cases with isolated ANSD in whom OTOF variants had been excluded. All seven exons and exon-intron boundaries of the PJVK gene were sequenced. We report three novel DFNB59 cases, one from the AR-NSHI cohort and two from the ANSD cohort, with stable, severe to profound NSHI. Two of the subjects received unilateral cochlear implantation, with apparent good outcomes. Our study expands the spectrum of PJVK mutations, as we report four novel pathogenic variants: p.Leu224Arg, p.His294Ilefs*43, p.His294Asp and p.Phe317Serfs*20. We review the reported cases of DFNB59, summarize the clinical features of this rare subtype of AR-NSHI and discuss the involvement of PJVK in ANSD.


Assuntos
Perda Auditiva Central/patologia , Perda Auditiva/patologia , Mutação , Proteínas do Tecido Nervoso/genética , Adolescente , Criança , Pré-Escolar , Feminino , Estudos de Associação Genética , Perda Auditiva/complicações , Perda Auditiva/genética , Perda Auditiva Central/complicações , Perda Auditiva Central/genética , Humanos , Lactente , Masculino , Linhagem
20.
Hum Mutat ; 32(7): 825-34, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21520338

RESUMO

The prevalence of DFNA8/DFNA12 (DFNA8/12), a type of autosomal dominant nonsyndromic hearing loss (ADNSHL), is unknown as comprehensive population-based genetic screening has not been conducted. We therefore completed unbiased screening for TECTA mutations in a Spanish cohort of 372 probands from ADNSHL families. Three additional families (Spanish, Belgian, and English) known to be linked to DFNA8/12 were also included in the screening. In an additional cohort of 835 American ADNSHL families, we preselected 73 probands for TECTA screening based on audiometric data. In aggregate, we identified 23 TECTA mutations in this process. Remarkably, 20 of these mutations are novel, more than doubling the number of reported TECTA ADNSHL mutations from 13 to 33. Mutations lie in all domains of the α-tectorin protein, including those for the first time identified in the entactin domain, as well as the vWFD1, vWFD2, and vWFD3 repeats, and the D1-D2 and TIL2 connectors. Although the majority are private mutations, four of them-p.Cys1036Tyr, p.Cys1837Gly, p.Thr1866Met, and p.Arg1890Cys-were observed in more than one unrelated family. For two of these mutations founder effects were also confirmed. Our data validate previously observed genotype-phenotype correlations in DFNA8/12 and introduce new correlations. Specifically, mutations in the N-terminal region of α-tectorin (entactin domain, vWFD1, and vWFD2) lead to mid-frequency NSHL, a phenotype previously associated only with mutations in the ZP domain. Collectively, our results indicate that DFNA8/12 hearing loss is a frequent type of ADNSHL.


Assuntos
Proteínas da Matriz Extracelular/genética , Perda Auditiva Neurossensorial/genética , Adolescente , Adulto , Idoso , Audiometria/métodos , Criança , Pré-Escolar , Feminino , Efeito Fundador , Proteínas Ligadas por GPI/genética , Estudos de Associação Genética , Ligação Genética , Haplótipos , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA