Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Theriogenology ; 158: 382-390, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33038824

RESUMO

Consequences of oocyte supplementation with l-carnitine may vary depending on species-specific cellular lipid profile, level of mitochondrial activity, or even on ipid availability in culture medium. This study aimed to evaluate l-carnitine supplementation on competence and gene expression of enzymes related to lipid metabolism in oocytes and cumulus cells from buffalo COCs matured in the presence or absence of fetal bovine serum (FBS). COCs were matured in vitro in FBS (10%) or bovine serum albumin fatty acid-free (BSA-FAF) (0.4%) and with or without supplementation with l-carnitine (3.03 mM). COCs matured in the presence of FBS or BSA-FAF were fertilized and cultured, then supplemented with l-carnitine during in vitro maturation or in vitro embryo culture. Finally, in vivo mature and immature COCs were included for gene expression analysis. COCs matured in culture medium with FBS in the presence of l-carnitine produced a lower blastocyst rate (p ≤ 0.05) compared to controls. In turn, the blastocyst rate from COCs matured with BSA-FAF in the presence of l-carnitine was similar to controls (p > 0.05), and higher than FBS + L-carnitine treated COCs (p ≤ 0.05). Addition of l-carnitine during embryo culture showed no differences in blastocyst production between experimental groups and controls (p > 0.05). In cumulus cells, gene expression of ACACA, SCD and FASN was upregulated in COCs matured in the presence of BSA-FAF + L-carnitine, while all genes in oocytes were significantly expressed upregulated by COCs matured in vivo, and only BSA-FAF + L-carnitine group showed similar expression of the FASN gene. In conclusion, the consequences of l-carnitine supplementation during in vitro maturation of buffalo COCs on oocyte competence vary depending on presence or absence of FBS in culture. With FBS, l-carnitine impairs oocyte competence, while in its absence, gene expression suggests adequate lipid metabolism and increased oocyte competence.


Assuntos
Búfalos , Técnicas de Maturação in Vitro de Oócitos , Animais , Carnitina/farmacologia , Ácidos Graxos/metabolismo , Técnicas de Maturação in Vitro de Oócitos/veterinária , Metabolismo dos Lipídeos , Oócitos/metabolismo , Soroalbumina Bovina/metabolismo
2.
Anim Reprod Sci ; 211: 106220, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31785645

RESUMO

The knowledge about the biological events that regulate lipid metabolism in oocytes and embryos in buffalo is scarce. Lipogenesis, lipolysis, transport and oxidation of fatty acids (FAs) occur in gametes and embryonic cells of all mammalian species, as an intrinsic component of energy metabolism. In oocytes and cumulus cells, degradation of lipids is responsible for the production of ATP that is essential for the metabolic processes that lead to oocyte maturation in in vivo and in vitro culture conditions. Similarly, throughout embryo development, blastomeres have the capacity to use exogenous and/or endogenous lipid reserves to serve as an energy source necessary for early embryonic development. In addition, supplementation of culture media with L-carnitine to promote lipid metabolism during in vitro oocyte maturation and early embryonic development leads to an improved embryo quality. The limited scientific evidence available in buffalo indicates there is relatively greater oocyte lipid content as compared with many other species that undergoes a dynamic distribution during folliculogenesis and follicle maturation and that has a positive effect on oocyte maturation and embryo development when there is L-carnitine supplementation of the media. Advances in the understanding of the biological peculiarities of lipid metabolism, and the consequences of its alteration on the quality of buffalo gametes and embryos, therefore, are necessary to design specific culture media and laboratory procedures as a strategy to increase in vitro-derived embryo production rates.


Assuntos
Búfalos/fisiologia , Técnicas de Cultura Embrionária/veterinária , Técnicas de Maturação in Vitro de Oócitos/veterinária , Metabolismo dos Lipídeos/fisiologia , Oócitos/fisiologia , Animais , Búfalos/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA