Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Regul Toxicol Pharmacol ; 126: 105045, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34506880

RESUMO

Hexavalent chromium (Cr(VI)) compounds have been studied extensively and several agencies have described their toxicological profile. In the past, personnel of the Dutch Ministry of Defence may have been exposed to Cr(VI) during maintenance activities on NATO equipment. To investigate if this exposure may have caused irreversible adverse health effects, the Dutch National Institute for Public Health and the Environment (RIVM) summarized all available knowledge from previous evaluations. This information was complemented with a scoping review to retrieve new scientific literature. All scientific evidence was evaluated in workshops with external experts to come to an overview of irreversible adverse health effects that could be caused by occupational exposure to Cr(VI) compounds. This review provides the hazard assessment for occupational exposure to Cr(VI) and carcinogenic effects by integrating and weighting evidence provided by international agencies complemented with newly published studies. It was concluded that occupational exposure to Cr(VI) can cause lung cancer, nose and nasal sinus cancer in humans. Cr(VI) is suspected to cause stomach cancer and laryngeal cancer in humans. It is currently insufficiently clear if Cr(VI) can cause cancer of the small intestine, oral cavity, pancreas, prostate or bladder in humans.


Assuntos
Cromo/efeitos adversos , Neoplasias/induzido quimicamente , Exposição Ocupacional/efeitos adversos , Animais , Bases de Dados Factuais , Humanos , Países Baixos/epidemiologia , Saúde Ocupacional , Medição de Risco
2.
Crit Rev Toxicol ; 48(6): 500-511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29745287

RESUMO

Non-genotoxic carcinogens (NGTXCs) do not cause direct DNA damage but induce cancer via other mechanisms. In risk assessment of chemicals and pharmaceuticals, carcinogenic risks are determined using carcinogenicity studies in rodents. With the aim to reduce animal testing, REACH legislation states that carcinogenicity studies are only allowed when specific concerns are present; risk assessment of compounds that are potentially carcinogenic by a non-genotoxic mode of action is usually based on subchronic toxicity studies. Health-based guidance values (HBGVs) of NGTXCs may therefore be based on data from carcinogenicity or subchronic toxicity studies depending on the legal framework that applies. HBGVs are usually derived from No-Observed-Adverse-Effect-Levels (NOAELs). Here, we investigate whether current risk assessment of NGTXCs based on NOAELs is protective against cancer. To answer this question, we estimated Benchmark doses (BMDs) for carcinogenicity data of 44 known NGTXCs. These BMDs were compared to the NOAELs derived from the same carcinogenicity studies, as well as to the NOAELs derived from the associated subchronic studies. The results lead to two main conclusions. First, a NOAEL derived from a subchronic study is similar to a NOAEL based on cancer effects from a carcinogenicity study, supporting the current practice in REACH. Second, both the subchronic and cancer NOAELs are, on average, associated with a cancer risk of around 1% in rodents. This implies that for those chemicals that are potentially carcinogenic in humans, current risk assessment of NGTXCs may not be completely protective against cancer. Our results call for a broader discussion within the scientific community, followed by discussions among risk assessors, policy makers, and other stakeholders as to whether or not the potential cancer risk levels that appear to be associated with currently derived HBGVs of NGXTCs are acceptable.


Assuntos
Testes de Carcinogenicidade/métodos , Carcinógenos/toxicidade , Neoplasias/induzido quimicamente , Animais , Testes de Carcinogenicidade/normas , Dano ao DNA , Feminino , Humanos , Masculino , Nível de Efeito Adverso não Observado , Medição de Risco/métodos , Medição de Risco/normas
3.
Crit Rev Toxicol ; 46(7): 615-39, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27142259

RESUMO

Assessment of genotoxic and carcinogenic potential is considered one of the basic requirements when evaluating possible human health risks associated with exposure to chemicals. Test strategies currently in place focus primarily on identifying genotoxic potential due to the strong association between the accumulation of genetic damage and cancer. Using genotoxicity assays to predict carcinogenic potential has the significant drawback that risks from non-genotoxic carcinogens remain largely undetected unless carcinogenicity studies are performed. Furthermore, test systems already developed to reduce animal use are not easily accepted and implemented by either industries or regulators. This manuscript reviews the test methods for cancer hazard identification that have been adopted by the regulatory authorities, and discusses the most promising alternative methods that have been developed to date. Based on these findings, a generally applicable tiered test strategy is proposed that can be considered capable of detecting both genotoxic as well as non-genotoxic carcinogens and will improve understanding of the underlying mode of action. Finally, strengths and weaknesses of this new integrative test strategy for cancer hazard identification are presented.


Assuntos
Testes de Carcinogenicidade/métodos , Animais , Bioensaio , Testes de Carcinogenicidade/normas , Carcinógenos/toxicidade , Dano ao DNA , Humanos , Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/normas , Mutagênicos/toxicidade , Neoplasias , Medição de Risco/métodos
4.
Regul Toxicol Pharmacol ; 81: 242-249, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27614137

RESUMO

Sub-chronic toxicity studies of 163 non-genotoxic chemicals were evaluated in order to predict the tumour outcome of 24-month rat carcinogenicity studies obtained from the EFSA and ToxRef databases. Hundred eleven of the 148 chemicals that did not induce putative preneoplastic lesions in the sub-chronic study also did not induce tumours in the carcinogenicity study (True Negatives). Cellular hypertrophy appeared to be an unreliable predictor of carcinogenicity. The negative predictivity, the measure of the compounds evaluated that did not show any putative preneoplastic lesion in de sub-chronic studies and were negative in the carcinogenicity studies, was 75%, whereas the sensitivity, a measure of the sub-chronic study to predict a positive carcinogenicity outcome was only 5%. The specificity, the accuracy of the sub-chronic study to correctly identify non-carcinogens was 90%. When the chemicals which induced tumours generally considered not relevant for humans (33 out of 37 False Negatives) are classified as True Negatives, the negative predictivity amounts to 97%. Overall, the results of this retrospective study support the concept that chemicals showing no histopathological risk factors for neoplasia in a sub-chronic study in rats may be considered non-carcinogenic and do not require further testing in a carcinogenicity study.


Assuntos
Testes de Carcinogenicidade , Carcinógenos/administração & dosagem , Carcinógenos/toxicidade , Bases de Dados Factuais , Neoplasias/induzido quimicamente , Animais , Relação Dose-Resposta a Droga , Ratos , Estudos Retrospectivos , Fatores de Risco , Fatores de Tempo
5.
Regul Toxicol Pharmacol ; 73(1): 210-26, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26188116

RESUMO

The European Partnership for Alternative Approaches to Animal Testing (EPAA) convened a workshop Knowledge sharing to facilitate regulatory decision-making. Fifty invited participants from the European Commission, national and European agencies and bodies, different industry sectors (chemicals, cosmetics, fragrances, pharmaceuticals, vaccines), and animal protection organizations attended the workshop. Four case studies exemplarily revealed which procedures are in place to obtain regulatory acceptance of new test methods in different sectors. Breakout groups discussed the status quo identifying the following facilitators for regulatory acceptance of alternatives to animal testing: Networking and communication (including cross-sector collaboration, international cooperation and harmonization); involvement of regulatory agencies from the initial stages of test method development on; certainty on prerequisites for test method acceptance including the establishment of specific criteria for regulatory acceptance. Data sharing and intellectual property issues affect many aspects of test method development, validation and regulatory acceptance. In principle, all activities should address replacement, reduction and refinement methods (albeit animal testing is generally prohibited in the cosmetics sector). Provision of financial resources and education support all activities aiming at facilitating the acceptance and use of alternatives to animal testing. Overall, workshop participants recommended building confidence in new methodologies by applying and gaining experience with them.


Assuntos
Alternativas aos Testes com Animais/métodos , Testes de Toxicidade/métodos , Animais , Cosméticos/química , Tomada de Decisões , Indústrias/métodos , Cooperação Internacional
6.
Crit Rev Toxicol ; 44(10): 876-94, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25058877

RESUMO

Regulatory toxicology urgently needs applicable alternative test systems that reduce animal use, testing time, and cost. European regulation on cosmetic ingredients has already banned animal experimentation for hazard identification, and public awareness drives toward additional restrictions in other regulatory frameworks as well. In addition, scientific progress stimulates a more mechanistic approach of hazard identification. Nevertheless, the implementation of alternative methods is lagging far behind their development. In search for general bottlenecks for the implementation of alternative methods, this manuscript reviews the state of the art as to the development and implementation of 10 diverse test systems in various areas of toxicological hazard assessment. They vary widely in complexity and regulatory acceptance status. The assays are reviewed as to parameters assessed, biological system involved, standardization, interpretation of results, extrapolation to human hazard, position in testing strategies, and current regulatory acceptance status. Given the diversity of alternative methods in many aspects, no common bottlenecks could be identified that hamper implementation of individual alternative assays in general. However, specific issues for the regulatory acceptance and application were identified for each assay. Acceptance of one-in-one replacement of complex in vivo tests by relatively simple in vitro assays is not feasible. Rather, innovative approaches using test batteries are required together with metabolic information and in vitro to in vivo dose extrapolation to convincingly provide the same level of information of current in vivo tests. A mechanistically based alternative approach using the Adverse Outcome Pathway concept could stimulate further (regulatory) acceptance of non-animal tests.


Assuntos
Alternativas aos Testes com Animais/métodos , Substâncias Perigosas/toxicidade , Testes de Toxicidade/métodos , Animais , Modelos Animais de Doenças , Humanos , Medição de Risco
7.
Environ Mol Mutagen ; 65(1-2): 4-24, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38545858

RESUMO

ToxTracker is a mammalian cell reporter assay that predicts the genotoxic properties of compounds with high accuracy. By evaluating induction of various reporter genes that play a key role in relevant cellular pathways, it provides insight into chemical mode-of-action (MoA), thereby supporting discrimination of direct-acting genotoxicants and cytotoxic chemicals. A comprehensive interlaboratory validation trial was conducted, in which the principles outlined in OECD Guidance Document 34 were followed, with the primary objectives of establishing transferability and reproducibility of the assay and confirming the ability of ToxTracker to correctly classify genotoxic and non-genotoxic compounds. Reproducibility of the assay to predict genotoxic MoA was confirmed across participating laboratories and data were evaluated in terms of concordance with in vivo genotoxicity outcomes. Seven laboratories tested a total of 64 genotoxic and non-genotoxic chemicals that together cover a broad chemical space. The within-laboratory reproducibility (WLR) was up to 98% (73%-98% across participants) and the overall between-laboratory reproducibility (BLR) was 83%. This trial confirmed the accuracy of ToxTracker to predict in vivo genotoxicants with a sensitivity of 84.4% and a specificity of 91.2%. We concluded that ToxTracker is a robust in vitro assay for the accurate prediction of in vivo genotoxicity. Considering ToxTracker's robust standalone accuracy and that it can provide important information on the MoA of chemicals, it is seen as a valuable addition to the regulatory in vitro genotoxicity battery that may even have the potential to replace certain currently used in vitro battery assays.


Assuntos
Dano ao DNA , Mamíferos , Animais , Humanos , Testes de Mutagenicidade , Reprodutibilidade dos Testes , Genes Reporter
8.
Toxicol Appl Pharmacol ; 266(2): 289-97, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23153559

RESUMO

An accurate assessment of the carcinogenic potential of chemicals and pharmaceutical drugs is essential to protect humans and the environment. Therefore, substances are extensively tested before they are marketed to the public. Currently, the rodent two-year bioassay is still routinely used to assess the carcinogenic potential of substances. However, over time it has become clear that this assay yields false positive results and also has several economic and ethical drawbacks including the use of large numbers of animals, the long duration, and the high cost. The need for a suitable alternative assay is therefore high. Previously, we have proposed the Xpa*p53 mouse model as a very suitable alternative to the two-year bioassay. We now show that the Xpc*p53 mouse model preserves all the beneficial traits of the Xpa*p53 model for sub-chronic carcinogen identification and can identify both genotoxic and non-genotoxic carcinogens. Moreover, Xpc*p53 mice appear to be more responsive than Xpa*p53 mice towards several genotoxic and non-genotoxic carcinogens. Furthermore, Xpc*p53 mice are far less sensitive than Xpa*p53 mice for the toxic activity of DNA damaging agents and as such clearly respond in a similar way as wild type mice do. These advantageous traits of the Xpc*p53 model make it a better alternative for in vivo carcinogen testing than Xpa*p53. This pilot study suggests that Xpc*p53 mice are suited for routine sub-chronic testing of both genotoxic and non-genotoxic carcinogens and as such represent a suitable alternative to possibly replace the murine life time cancer bioassay.


Assuntos
Carcinógenos/toxicidade , Proteínas de Ligação a DNA/genética , Genes p53/genética , Mutagênicos/toxicidade , Proteína de Xeroderma Pigmentoso Grupo A/genética , Animais , Testes de Carcinogenicidade/métodos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Testes de Mutagenicidade/métodos , Projetos Piloto
9.
Environ Mol Mutagen ; 64(1): 4-15, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36345771

RESUMO

Quantitative relationships between carcinogenic potency and mutagenic potency have been previously examined using a benchmark dose (BMD)-based approach. We extended those analyses by using human exposure data for 48 compounds to calculate carcinogenicity-derived and genotoxicity-derived margin of exposure values (MOEs) that can be used to prioritize substances for risk management. MOEs for 16 of the 48 compounds were below 10,000, and consequently highlighted for regulatory concern. Of these, 15 were highlighted using genotoxicity-derived (micronucleus [MN] dose-response data) MOEs. A total of 13 compounds were highlighted using carcinogenicity-derived MOEs; 12 compounds were overlapping. MOEs were also calculated using transgenic rodent (TGR) mutagenicity data. For 10 of the 12 compounds examined using TGR data, the results similarly revealed that mutagenicity-derived MOEs yield regulatory decisions that correspond with those based on carcinogenicity-derived MOEs. The effect of benchmark response (BMR) on MOE determination was also examined. Reinterpretation of the analyses using a BMR of 50% indicated that four out of 15 compounds prioritized using MN-derived MOEs based on a default BMR of 5% would have been missed. The results indicate that regulatory decisions based on in vivo genotoxicity dose-response data would be consistent with those based on carcinogenicity dose-response data; in some cases, genotoxicity-based decisions would be more conservative. Going forward, and in the absence of carcinogenicity data, in vivo genotoxicity assays (MN and TGR) can be used to effectively prioritize substances for regulatory action. Routine use of the MOE approach necessitates the availability of reliable human exposure estimates, and consensus regarding appropriate BMRs for genotoxicity endpoints.


Assuntos
Carcinógenos , Mutagênicos , Animais , Humanos , Mutagênicos/toxicidade , Testes de Mutagenicidade/métodos , Mutagênese , Carcinógenos/toxicidade , Dano ao DNA , Roedores
10.
Environ Mol Mutagen ; 63(8-9): 376-388, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36271823

RESUMO

The OECD Test Guideline 488 (TG 488) for the Transgenic Rodent Gene Mutation Assay has undergone several revisions to update the recommended design for studying mutations in somatic tissues and male germ cells. The recently revised TG recommends a single sampling time of 28 days following 28 days of exposure (i.e., 28 + 28 days) for all tissues, irrespective of proliferation rates. An alternative design (i.e., 28 + 3 days) is appropriate when germ cell data is not required, nor considered. While the 28 + 28 days design is clearly preferable for slowly proliferating somatic tissues and germ cells, there is still uncertainty about the impact of extending the sampling time to 28 days for rapidly somatic tissues. Here, we searched the available literature for evidence supporting the applicability and utility of the 28 + 28 days design for rapidly proliferating tissues. A total of 79 tests were identified. When directly comparing results from both designs in the same study, there was no evidence that the 28 + 28 days regimen resulted in a qualitatively different outcome from the 28 + 3 days design. Studies with a diverse range of agents that employed only a 28 + 28 days protocol provide further evidence that this design is appropriate for rapidly proliferating tissues. Benchmark dose analyses demonstrate high quantitative concordance between the 28 + 3 and 28 + 28 days designs for rapidly proliferating tissues. Accordingly, our review confirms that the 28 + 28 days design is appropriate to assess mutagenicity in both slowly and rapidly proliferating somatic tissues, and germ cells, and provides further support for the recommended design in the recently adopted TG 488.


Assuntos
Mutagênicos , Roedores , Animais , Masculino , Animais Geneticamente Modificados/genética , Mutação , Células Germinativas , Testes de Mutagenicidade/métodos
11.
Crit Rev Toxicol ; 41(6): 545-54, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21609253

RESUMO

This paper surveys the scientific basis for the current threshold approach for reproductive hazard and risk assessment. In some regulatory areas it was recently suggested to consider reproductive toxicants under the stringent linear extrapolation risk assessment paradigm that was developed for genotoxic carcinogens. First, the current risk assessment paradigm for genotoxic carcinogens is addressed, followed by an overview of reproductive toxicology and its threshold dose approach for hazard and risk assessment, the testing procedures for assessing the reproductive toxicity of chemicals, and the derivation of conclusions on their risk assessment and Classification, Labelling and Packaging (CLP). Relevant details of testing methodologies are discussed, such as exposure time windows, parameters determined, and the coverage of the entire reproductive cycle. In addition, the dose-response relationship is considered, illustrated with several examples. It is concluded that the current risk assessment methodology for genotoxic carcinogens is a debatable worst-case scenario and that for risk assessment of reproductive toxicants the threshold dose approach remains valid.


Assuntos
Carcinógenos/toxicidade , Substâncias Perigosas/toxicidade , Níveis Máximos Permitidos , Animais , Relação Dose-Resposta a Droga , Determinação de Ponto Final , Humanos , Mutagênicos/toxicidade , Medição de Risco , Teratogênicos/toxicidade
12.
Mutat Res ; 723(2): 101-7, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-21473931

RESUMO

Improving current in vitro genotoxicity tests is an ongoing task for genetic toxicologists. Further, the question on how to deal with positive in vitro results that are demonstrated to not predict genotoxicity or carcinogenicity potential in rodents or humans is a challenge. These two aspects were addressed at the 5th International Workshop on Genotoxicity Testing (IWGT) held in Basel, Switzerland, on August 17-19, 2009. The objectives of the working group (WG) were to make recommendations on the use of cell types or lines, if possible, and to provide evaluations of promising new approaches. Results obtained in rodent cell lines with impaired p53 function (L5178Y, V79, CHL and CHO cells) and human p53-competent cells (peripheral blood lymphocytes, TK6 and HepG2 cells) suggest that a reduction in the percentage of non-relevant positive results for carcinogenicity prediction can be achieved by careful selection of cells used without decreasing the sensitivity of the assays. Therefore, the WG suggested using p53- competent - preferably human - cells in in vitro micronucleus or chromosomal aberration tests. The use of the hepatoma cell line HepaRG for genotoxicity testing was considered promising since these cells possess better phase I and II metabolizing potential compared to cell lines commonly used in this area and may overcome the need for the addition of S9. For dermally applied compounds, the WG agreed that in vitro reconstructed skin models, once validated, will be useful to follow up on positive results from standard in vitro assays as they resemble the properties of human skin (barrier function, metabolism). While the reconstructed skin micronucleus assay has been shown to be further advanced, there was also consensus that the Comet assay should be further evaluated due to its independence from cell proliferation and coverage of a wider spectrum of DNA damage.


Assuntos
Testes de Mutagenicidade/métodos , Testes de Mutagenicidade/tendências , Animais , Linhagem Celular , Aberrações Cromossômicas , Guias como Assunto , Humanos , Testes para Micronúcleos/métodos , Valor Preditivo dos Testes
13.
Mutat Res ; 723(2): 121-8, 2011 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-20854927

RESUMO

At the 2009 International Workshop on Genotoxicity Testing in Basel, an expert group gathered to provide guidance on suitable follow-up tests to describe risk when basic in vivo genotoxicity tests have yielded positive results. The working group agreed that non-linear dose-response curves occur in vivo with at least some DNA-reactive agents. Quantitative risk assessment in such cases requires the use of (1) adequate data, i.e., the use of all available data for the selection of reliable in vivo models to be used for quantitative risk assessment, (2) appropriate mathematical models and statistical analysis for characterizing the dose-response relationships and allowing the use of quantitative and dose-response information in the interpretation of results, (3) mode of action (MOA) information for the evaluation and analysis of risk, and (4) reliable assessments of the internal dose across species for deriving acceptable margins of exposure and risk levels. Hence, the elucidation of MOA and understanding of the mechanism underlying the dose-response curve are important components of risk assessment. The group agreed on the need for (i) the development of in vivo assays, especially multi-endpoint, multi-species assays, with emphasis on those applicable to humans, and (ii) consensus about the most appropriate mathematical models and statistical analyses for defining non-linear dose-responses and exposure levels associated with acceptable risk.


Assuntos
Testes de Mutagenicidade/métodos , Animais , Relação Dose-Resposta a Droga , Humanos , Matemática , Modelos Teóricos , Medição de Risco , Estatística como Assunto
14.
Arch Toxicol ; 85(5): 367-485, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21533817

RESUMO

The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.


Assuntos
Alternativas aos Testes com Animais/tendências , Qualidade de Produtos para o Consumidor/legislação & jurisprudência , Cosméticos/normas , Testes de Toxicidade/tendências , Alternativas aos Testes com Animais/normas , Animais , Disponibilidade Biológica , Testes de Carcinogenicidade/métodos , União Europeia , Guias como Assunto , Humanos , Reprodutibilidade dos Testes , Medição de Risco/métodos , Medição de Risco/tendências , Pele/efeitos dos fármacos , Testes de Toxicidade/métodos
15.
J Appl Toxicol ; 31(5): 421-30, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21061450

RESUMO

The chemical legislation of the EU, Registration, Evaluation, and Authorization of Chemicals (REACH), stipulates that about 30 000 chemical substances are to be assessed on their possible risks. Toxicological evaluation of these compounds will at least partly be based on animal testing. In particular, the assessment of reproductive toxicity is a very complicated, time-consuming and animal-demanding process. Introducing microarray-based technologies can potentially refine in vivo toxicity testing. If compounds of a distinct chemical class induce reproducible gene-expression responses with a recognizable overlap, these gene-expression signatures may indicate intrinsic features of certain compounds, including specific toxicity. In the present study, we have set out the first steps towards this approach for the reproductive toxicity of phthalates. Male rats were treated with a single dose of either reprotoxic or non-reprotoxic phthalates, and were analyzed 24 h afterwards. Subsequently, histopathological and gene-expression profiling analyses were performed. Despite ambiguous histopathological observations, we were able to identify genes with differential expression profiles between the reprotoxic phthalates and the non-reprotoxic counterparts. This shows that differences in gene-expression profiles, indicative of the type of exposure, may be detected earlier, or at lower doses, than classical pathological endpoints. These findings are promising for 'early warning' biomarker analyses and for using toxicogenomics in a category approach. Ultimately, this could lead to a more cost-effective approach for prioritizing the toxicity testing of large numbers of chemicals in a short period of time in hazard assessment of chemicals, which is one of the objectives of the REACH chemical legislation.


Assuntos
Antagonistas de Hormônios/toxicidade , Ácidos Ftálicos/toxicidade , Reprodução/efeitos dos fármacos , Testículo/efeitos dos fármacos , Toxicogenética/métodos , Transcriptoma/efeitos dos fármacos , Administração Oral , Alternativas aos Testes com Animais , Animais , Expressão Gênica , Perfilação da Expressão Gênica , Antagonistas de Hormônios/classificação , Masculino , Ácidos Ftálicos/classificação , Análise Serial de Proteínas , Ratos , Ratos Endogâmicos , Reprodução/genética , Transcriptoma/genética
16.
BMC Genomics ; 11: 24, 2010 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-20067618

RESUMO

BACKGROUND: Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC) as compared to wild-type (WT) cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM) and gamma-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts) after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU) and vehicle were taken as controls. RESULTS: Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. CONCLUSION: These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.


Assuntos
Bleomicina/farmacologia , Reparo do DNA , Perfilação da Expressão Gênica , Mitomicina/farmacologia , Mutagênicos/farmacologia , Acetoxiacetilaminofluoreno/farmacologia , Animais , Apoptose , Linhagem Celular , Dano ao DNA , Etilnitrosoureia/farmacologia , Genótipo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
17.
BMC Genomics ; 11: 333, 2010 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-20504355

RESUMO

BACKGROUND: Benzo [a]pyrene (B[a]P) exposure induces DNA adducts at all stages of spermatogenesis and in testis, and removal of these lesions is less efficient in nucleotide excision repair deficient Xpc-/- mice than in wild type mice. In this study, we investigated by using microarray technology whether compromised DNA repair in Xpc-/- mice may lead to a transcriptional reaction of the testis to cope with increased levels of B[a]P induced DNA damage. RESULTS: Two-Way ANOVA revealed only 4 genes differentially expressed between wild type and Xpc-/- mice, and 984 genes between testes of B[a]P treated and untreated mice irrespective of the mouse genotype. However, the level in which these B[a]P regulated genes are expressed differs between Wt and Xpc-/- mice (p = 0.000000141), and were predominantly involved in the regulation of cell cycle, translation, chromatin structure and spermatogenesis, indicating a general stress response. In addition, analysis of cell cycle phase dependent gene expression revealed that expression of genes involved in G1-S and G2-M phase arrest was increased after B[a]P exposure in both genotypes. A slightly higher induction of average gene expression was observed at the G2-M checkpoint in Xpc-/- mice, but this did not reach statistical significance (P = 0.086). Other processes that were expected to have changed by exposure, like apoptosis and DNA repair, were not found to be modulated at the level of gene expression. CONCLUSION: Gene expression in testis of untreated Xpc-/- and wild type mice were very similar, with only 4 genes differentially expressed. Exposure to benzo(a)pyrene affected the expression of genes that are involved in cell cycle regulation in both genotypes, indicating that the presence of unrepaired DNA damage in testis blocks cell proliferation to protect DNA integrity in both DNA repair proficient and deficient animals.


Assuntos
Benzo(a)pireno/farmacologia , Reparo do DNA , Regulação da Expressão Gênica/efeitos dos fármacos , Testículo/efeitos dos fármacos , Testículo/metabolismo , Adaptação Biológica/efeitos dos fármacos , Adaptação Biológica/genética , Animais , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Dano ao DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes , Fatores de Tempo
19.
Environ Mol Mutagen ; 61(1): 55-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31743493

RESUMO

In utero development represents a sensitive window for the induction of mutations. These mutations may subsequently expand clonally to populate entire organs or anatomical structures. Although not all adverse mutations will affect tissue structure or function, there is growing evidence that clonally expanded genetic mosaics contribute to various monogenic and complex diseases, including cancer. We posit that genetic mosaicism is an underestimated potential health problem that is not fully addressed in the current regulatory genotoxicity testing paradigm. Genotoxicity testing focuses exclusively on adult exposures and thus may not capture the complexity of genetic mosaicisms that contribute to human disease. Numerous studies have shown that conversion of genetic damage into mutations during early developmental exposures can result in much higher mutation burdens than equivalent exposures in adults in certain tissues. Therefore, we assert that analysis of genetic effects caused by in utero exposures should be considered in the current regulatory testing paradigm, which is possible by harmonization with current reproductive/developmental toxicology testing strategies. This is particularly important given the recent proposed paradigm change from simple hazard identification to quantitative mutagenicity assessment. Recent developments in sequencing technologies offer practical tools to detect mutations in any tissue or species. In addition to mutation frequency and spectrum, these technologies offer the opportunity to characterize the extent of genetic mosaicism following exposure to mutagens. Such integration of new methods with existing toxicology guideline studies offers the genetic toxicology community a way to modernize their testing paradigm and to improve risk assessment for vulnerable populations. Environ. Mol. Mutagen. 61:55-65, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Exposição Materna/efeitos adversos , Mosaicismo/efeitos dos fármacos , Mutagênicos/toxicidade , Mutação/efeitos dos fármacos , Exposição Paterna/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/genética , Animais , Feminino , Testes Genéticos/métodos , Humanos , Masculino , Mutagênese/efeitos dos fármacos , Testes de Mutagenicidade/métodos , Taxa de Mutação , Gravidez
20.
Environ Mol Mutagen ; 61(1): 94-113, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31709603

RESUMO

We recently published a next generation framework for assessing the risk of genomic damage via exposure to chemical substances. The framework entails a systematic approach with the aim to quantify risk levels for substances that induce genomic damage contributing to human adverse health outcomes. Here, we evaluated the utility of the framework for assessing the risk for industrial chemicals, using the case of benzene. Benzene is a well-studied substance that is generally considered a genotoxic carcinogen and is known to cause leukemia. The case study limits its focus on occupational and general population health as it relates to benzene exposure. Using the framework as guidance, available data on benzene considered relevant for assessment of genetic damage were collected. Based on these data, we were able to conduct quantitative analyses for relevant data sets to estimate acceptable exposure levels and to characterize the risk of genetic damage. Key observations include the need for robust exposure assessments, the importance of information on toxicokinetic properties, and the benefits of cheminformatics. The framework points to the need for further improvement on understanding of the mechanism(s) of action involved, which would also provide support for the use of targeted tests rather than a prescribed set of assays. Overall, this case study demonstrates the utility of the next generation framework to quantitatively model human risk on the basis of genetic damage, thereby enabling a new, innovative risk assessment concept. Environ. Mol. Mutagen. 61:94-113, 2020. © 2019 The Authors. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Assuntos
Benzeno/toxicidade , Carcinógenos/toxicidade , Mutagênese/efeitos dos fármacos , Mutagênicos/toxicidade , Animais , Benzeno/metabolismo , Carcinógenos/metabolismo , Dano ao DNA/efeitos dos fármacos , Exposição Ambiental/efeitos adversos , Humanos , Leucemia/induzido quimicamente , Leucemia/genética , Testes de Mutagenicidade/métodos , Mutagênicos/metabolismo , Exposição Ocupacional/efeitos adversos , Medição de Risco/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA