Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
PLoS Biol ; 17(11): e3000531, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31682603

RESUMO

Recycling endosomes regulate plasma membrane recycling. Recently, recycling endosome-associated proteins have been implicated in the positioning and orientation of the mitotic spindle and cytokinesis. Loss of MYO5B, encoding the recycling endosome-associated myosin Vb, is associated with tumor development and tissue architecture defects in the gastrointestinal tract. Whether loss of MYO5B expression affects mitosis is not known. Here, we demonstrate that loss of MYO5B expression delayed cytokinesis, perturbed mitotic spindle orientation, led to the misorientation of the plane of cell division during the course of mitosis, and resulted in the delamination of epithelial cells. Remarkably, the effects on spindle orientation, but not cytokinesis, were a direct consequence of physical hindrance by giant late endosomes, which were formed in a chloride channel-sensitive manner concomitant with a redistribution of chloride channels from the cell periphery to late endosomes upon loss of MYO5B. Rab7 availability was identified as a limiting factor for the development of giant late endosomes. In accordance, increasing rab7 availability corrected mitotic spindle misorientation and cell delamination in cells lacking MYO5B expression. In conclusion, we identified a novel role for MYO5B in the regulation of late endosome size control and identify the inability to control late endosome size as an unexpected novel mechanism underlying defects in cell division orientation and epithelial architecture.


Assuntos
Endossomos/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Fuso Acromático/metabolismo , Animais , Células CACO-2 , Adesão Celular/fisiologia , Divisão Celular/fisiologia , Linhagem Celular , Membrana Celular/metabolismo , Citocinese/genética , Citocinese/fisiologia , Endossomos/genética , Células Epiteliais/metabolismo , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitose/fisiologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7
2.
Hepatology ; 72(1): 213-229, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31750554

RESUMO

BACKGROUND AND AIMS: Progressive familial intrahepatic cholestasis (PFIC) 6 has been associated with missense but not biallelic nonsense or frameshift mutations in MYO5B, encoding the motor protein myosin Vb (myoVb). This genotype-phenotype correlation and the mechanism through which MYO5B mutations give rise to PFIC are not understood. The aim of this study was to determine whether the loss of myoVb or expression of patient-specific myoVb mutants can be causally related to defects in canalicular protein localization and, if so, through which mechanism. APPROACH AND RESULTS: We demonstrate that the cholestasis-associated substitution of the proline at amino acid position 600 in the myoVb protein to a leucine (P660L) caused the intracellular accumulation of bile canalicular proteins in vesicular compartments. Remarkably, the knockout of MYO5B in vitro and in vivo produced no canalicular localization defects. In contrast, the expression of myoVb mutants consisting of only the tail domain phenocopied the effects of the Myo5b-P660L mutation. Using additional myoVb and rab11a mutants, we demonstrate that motor domain-deficient myoVb inhibited the formation of specialized apical recycling endosomes and that its disrupting effect on the localization of canalicular proteins was dependent on its interaction with active rab11a and occurred at the trans-Golgi Network/recycling endosome interface. CONCLUSIONS: Our results reveal a mechanism through which MYO5B motor domain mutations can cause the mislocalization of canalicular proteins in hepatocytes which, unexpectedly, does not involve myoVb loss-of-function but, as we propose, a rab11a-mediated gain-of-toxic function. The results explain why biallelic MYO5B mutations that affect the motor domain but not those that eliminate myoVb expression are associated with PFIC6.


Assuntos
Colestase Intra-Hepática/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Genótipo , Humanos , Células Tumorais Cultivadas
3.
J Hepatol ; 71(2): 344-356, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30965071

RESUMO

BACKGROUND & AIMS: Hepatocyte polarity is essential for the development of bile canaliculi and for safely transporting bile and waste products from the liver. Functional studies of autologous mutated proteins in the context of the polarized hepatocyte have been challenging because of the lack of appropriate cell models. The aims of this study were to obtain a patient-specific hepatocyte model that recapitulated hepatocyte polarity and to employ this model to study endogenous mutant proteins in liver diseases that involve hepatocyte polarity. METHODS: Urine cell-derived pluripotent stem cells, taken from a patient with a homozygous mutation in ATP7B and a patient with a heterozygous mutation, were differentiated towards hepatocyte-like cells (hiHeps). HiHeps were also derived from a patient with MEDNIK syndrome. RESULTS: Polarized hiHeps that formed in vivo-like bile canaliculi could be generated from embryonic and patient urine cell-derived pluripotent stem cells. HiHeps recapitulated polarized protein trafficking processes, exemplified by the Cu2+-induced redistribution of the copper transporter protein ATP7B to the bile canalicular domain. We demonstrated that, in contrast to the current dogma, the most frequent yet enigmatic Wilson disease-causing ATP7B-H1069Q mutation per se did not preclude trafficking of ATP7B to the trans-Golgi Network. Instead, it prevented its Cu2+-induced polarized redistribution to the bile canalicular domain, which could not be reversed by pharmacological folding chaperones. Finally, we demonstrate that hiHeps from a patient with MEDNIK syndrome, suffering from liver copper overload of unclear etiology, showed no defect in the Cu2+-induced redistribution of ATP7B to the bile canaliculi. CONCLUSIONS: Functional cell polarity can be achieved in patient pluripotent stem cell-derived hiHeps, enabling, for the first time, the study of the endogenous mutant proteins, patient-specific pathogenesis and drug responses for diseases where hepatocyte polarity is a key factor. LAY SUMMARY: This study demonstrates that cells that are isolated from urine can be reprogrammed in a dish towards hepatocytes that display architectural characteristics similar to those seen in the intact liver. The application of this methodology to cells from patients diagnosed with inherited copper metabolism-related liver diseases (that is, Wilson disease and MEDNIK syndrome) revealed unexpected and novel insights into patient mutation-specific disease mechanisms and drug responses.


Assuntos
Canalículos Biliares/patologia , Polaridade Celular/genética , Eritroceratodermia Variável/genética , Hepatócitos/metabolismo , Degeneração Hepatolenticular/genética , Células-Tronco Pluripotentes/metabolismo , Complexo 1 de Proteínas Adaptadoras/genética , Subunidades sigma do Complexo de Proteínas Adaptadoras/genética , Canalículos Biliares/metabolismo , Células Cultivadas , Cobre/metabolismo , ATPases Transportadoras de Cobre/genética , Eritroceratodermia Variável/patologia , Degeneração Hepatolenticular/patologia , Humanos , Proteínas Mutantes/metabolismo , Mutação , Transporte Proteico
4.
Hum Mutat ; 39(3): 333-344, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29266534

RESUMO

Microvillus inclusion disease (MVID) is a rare but fatal autosomal recessive congenital diarrheal disorder caused by MYO5B mutations. In 2013, we launched an open-access registry for MVID patients and their MYO5B mutations (www.mvid-central.org). Since then, additional unique MYO5B mutations have been identified in MVID patients, but also in non-MVID patients. Animal models have been generated that formally prove the causality between MYO5B and MVID. Importantly, mutations in two other genes, STXBP2 and STX3, have since been associated with variants of MVID, shedding new light on the pathogenesis of this congenital diarrheal disorder. Here, we review these additional genes and their mutations. Furthermore, we discuss recent data from cell studies that indicate that the three genes are functionally linked and, therefore, may constitute a common disease mechanism that unifies a subset of phenotypically linked congenital diarrheal disorders. We present new data based on patient material to support this. To congregate existing and future information on MVID geno-/phenotypes, we have updated and expanded the MVID registry to include all currently known MVID-associated gene mutations, their demonstrated or predicted functional consequences, and associated clinical information.


Assuntos
Diarreia/congênito , Diarreia/genética , Predisposição Genética para Doença , Proteínas Munc18/genética , Mutação/genética , Miosina Tipo V/genética , Proteínas Qa-SNARE/genética , Animais , Humanos
6.
Am J Physiol Gastrointest Liver Physiol ; 311(1): G142-55, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27229121

RESUMO

Loss of function mutations in the actin motor myosin Vb (Myo5b) lead to microvillus inclusion disease (MVID) and death in newborns and children. MVID results in secretory diarrhea, brush border (BB) defects, villus atrophy, and microvillus inclusions (MVIs) in enterocytes. How loss of Myo5b results in increased stool loss of chloride (Cl(-)) and sodium (Na(+)) is unknown. The present study used Myo5b loss-of-function human MVID intestine, polarized intestinal cell models of secretory crypt (T84) and villus resembling (CaCo2BBe, C2BBe) enterocytes lacking Myo5b in conjunction with immunofluorescence confocal stimulated emission depletion (gSTED) imaging, immunohistochemical staining, transmission electron microscopy, shRNA silencing, immunoblots, and electrophysiological approaches to examine the distribution, expression, and function of the major BB ion transporters NHE3 (Na(+)), CFTR (Cl(-)), and SLC26A3 (DRA) (Cl(-)/HCO3 (-)) that control intestinal fluid transport. We hypothesized that enterocyte maturation defects lead villus atrophy with immature secretory cryptlike enterocytes in the MVID epithelium. We investigated the role of Myo5b in enterocyte maturation. NHE3 and DRA localization and function were markedly reduced on the BB membrane of human MVID enterocytes and Myo5bKD C2BBe cells, while CFTR localization was preserved. Forskolin-stimulated CFTR ion transport in Myo5bKD T84 cells resembled that of control. Loss of Myo5b led to YAP1 nuclear retention, retarded enterocyte maturation, and a cryptlike phenotype. We conclude that preservation of functional CFTR in immature enterocytes, reduced functional expression of NHE3, and DRA contribute to Cl(-) and Na(+) stool loss in MVID diarrhea.


Assuntos
Enterócitos/metabolismo , Jejuno/metabolismo , Síndromes de Malabsorção/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Microvilosidades/patologia , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células CACO-2 , Antiportadores de Cloreto-Bicarbonato/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Enterócitos/ultraestrutura , Regulação da Expressão Gênica , Humanos , Transporte de Íons , Jejuno/patologia , Jejuno/ultraestrutura , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/patologia , Proteínas de Membrana Transportadoras/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Mucolipidoses/genética , Mucolipidoses/patologia , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Fenótipo , Fosfoproteínas/metabolismo , Interferência de RNA , Transdução de Sinais , Trocador 3 de Sódio-Hidrogênio , Trocadores de Sódio-Hidrogênio/metabolismo , Transportadores de Sulfato , Fatores de Transcrição , Transfecção , Proteínas de Sinalização YAP
7.
J Cell Sci ; 127(Pt 5): 1007-17, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24413175

RESUMO

Microvilli at the apical surface of enterocytes allow the efficient absorption of nutrients in the intestine. Ezrin activation by its phosphorylation at T567 is important for microvilli development, but how such ezrin phosphorylation is controlled is not well understood. We demonstrate that a subset of kinases that phosphorylate ezrin closely co-distributes with apical recycling endosome marker Rab11a in the subapical domain. Expression of dominant-negative Rab11a mutant or depletion of the Rab11a-binding motor protein myosin Vb prevents the subapical enrichment of Rab11a and these kinases and inhibits ezrin phosphorylation and microvilli development, without affecting the polarized distribution of ezrin itself. We observe a similar loss of the subapical enrichment of Rab11a and the kinases and reduced phosphorylation of ezrin in microvillus inclusion disease, which is associated with MYO5B mutations, intestinal microvilli atrophy and malabsorption. Thus, part of the machinery for ezrin activation depends on recycling endosomes controlled by myosin Vb and Rab11a which, we propose, might act as subapical signaling platforms that enterocytes use to regulate development of microvilli and maintain human intestinal function.


Assuntos
Proteínas do Citoesqueleto/metabolismo , Enterócitos/metabolismo , Cadeias Pesadas de Miosina/fisiologia , Miosina Tipo V/fisiologia , Processamento de Proteína Pós-Traducional , Proteínas rab de Ligação ao GTP/fisiologia , Linhagem Celular Tumoral , Polaridade Celular , Códon sem Sentido , Endossomos/metabolismo , Células HEK293 , Humanos , Isoenzimas/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/genética , Microvilosidades/metabolismo , Microvilosidades/patologia , Mucolipidoses/genética , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico
9.
PLoS Biol ; 11(12): e1001739, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24358023

RESUMO

The development and maintenance of polarized epithelial tissue requires a tightly controlled orientation of mitotic cell division relative to the apical polarity axis. Hepatocytes display a unique polarized architecture. We demonstrate that mitotic hepatocytes asymmetrically segregate their apical plasma membrane domain to the nascent daughter cells. The non-polarized nascent daughter cell can form a de novo apical domain with its new neighbor. This asymmetric segregation of apical domains is facilitated by a geometrically distinct "apicolateral" subdomain of the lateral surface present in hepatocytes. The polarity protein partitioning-defective 1/microtubule-affinity regulating kinase 2 (Par1b/MARK2) translates this positional landmark to cortical polarity by promoting the apicolateral accumulation of Leu-Gly-Asn repeat-enriched protein (LGN) and the capture of nuclear mitotic apparatus protein (NuMA)-positive astral microtubules to orientate the mitotic spindle. Proliferating hepatocytes thus display an asymmetric inheritance of their apical domains via a mechanism that involves Par1b and LGN, which we postulate serves the unique tissue architecture of the developing liver parenchyma.


Assuntos
Membrana Celular/fisiologia , Polaridade Celular/fisiologia , Hepatócitos/fisiologia , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Metaloproteases/fisiologia , Proteínas Mitocondriais/fisiologia , Fuso Acromático/fisiologia , Proliferação de Células , Células Hep G2/fisiologia , Humanos
10.
J Gen Virol ; 96(Pt 6): 1380-1388, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25701818

RESUMO

Hepatitis C virus (HCV) infects the liver and hepatocytes are the major cell type supporting viral replication. Hepatocytes and cholangiocytes derive from a common hepatic progenitor cell that proliferates during inflammatory conditions, raising the possibility that cholangiocytes may support HCV replication and contribute to the hepatic reservoir. We screened cholangiocytes along with a panel of cholangiocarcinoma-derived cell lines for their ability to support HCV entry and replication. While primary cholangiocytes were refractory to infection and lacked expression of several entry factors, two cholangiocarcinoma lines, CC-LP-1 and Sk-ChA-1, supported efficient HCV entry; furthermore, Sk-ChA-1 cells supported full virus replication. In vivo cholangiocarcinomas expressed all of the essential HCV entry factors; however, cholangiocytes adjacent to the tumour and in normal tissue showed a similar pattern of receptor expression to ex vivo isolated cholangiocytes, lacking SR-BI expression, explaining their inability to support infection. This study provides the first report that HCV can infect cholangiocarcinoma cells and suggests that these heterogeneous tumours may provide a reservoir for HCV replication in vivo.


Assuntos
Células Epiteliais/virologia , Hepacivirus/fisiologia , Tropismo Viral , Linhagem Celular Tumoral , Hepacivirus/crescimento & desenvolvimento , Humanos , Internalização do Vírus , Replicação Viral
11.
Cell Mol Gastroenterol Hepatol ; 17(6): 983-1005, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38307491

RESUMO

Microvillus inclusion disease (MVID) is a rare condition that is present from birth and affects the digestive system. People with MVID experience severe diarrhea that is difficult to control, cannot absorb dietary nutrients, and struggle to grow and thrive. In addition, diverse clinical manifestations, some of which are life-threatening, have been reported in cases of MVID. MVID can be caused by variants in the MYO5B, STX3, STXBP2, or UNC45A gene. These genes produce proteins that have been functionally linked to each other in intestinal epithelial cells. MVID associated with STXBP2 variants presents in a subset of patients diagnosed with familial hemophagocytic lymphohistiocytosis type 5. MVID associated with UNC45A variants presents in most patients diagnosed with osteo-oto-hepato-enteric syndrome. Furthermore, variants in MYO5B or STX3 can also cause other diseases that are characterized by phenotypes that can co-occur in subsets of patients diagnosed with MVID. Recent studies involving clinical data and experiments with cells and animals revealed connections between specific phenotypes occurring outside of the digestive system and the type of gene variants that cause MVID. Here, we have reviewed these patterns and correlations, which are expected to be valuable for healthcare professionals in managing the disease and providing personalized care for patients and their families.


Assuntos
Síndromes de Malabsorção , Microvilosidades , Mucolipidoses , Fenótipo , Humanos , Mucolipidoses/genética , Mucolipidoses/patologia , Microvilosidades/patologia , Microvilosidades/genética , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/patologia , Animais , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Mutação , Predisposição Genética para Doença
12.
iScience ; 27(4): 109400, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38523777

RESUMO

Rho GTPases are molecular switches regulating multiple cellular processes. To investigate the role of RhoA in normal intestinal physiology, we used a conditional mouse model overexpressing a dominant negative RhoA mutant (RhoAT19N) in the intestinal epithelium. Although RhoA inhibition did not cause an overt phenotype, increased levels of nuclear ß-catenin were observed in the small intestinal epithelium of RhoAT19N mice, and the overexpression of multiple Wnt target genes revealed a chronic activation of Wnt signaling. Elevated Wnt signaling in RhoAT19N mice and intestinal organoids did not affect the proliferation of intestinal epithelial cells but significantly interfered with their differentiation. Importantly, 17-month-old RhoAT19N mice showed a significant increase in the number of spontaneous intestinal tumors. Altogether, our results indicate that RhoA regulates the differentiation of intestinal epithelial cells and inhibits tumor initiation, likely through the control of Wnt signaling, a key regulator of proliferation and differentiation in the intestine.

13.
Hum Mutat ; 34(12): 1597-605, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24014347

RESUMO

Microvillus inclusion disease (MVID) is one of the most severe congenital intestinal disorders and is characterized by neonatal secretory diarrhea and the inability to absorb nutrients from the intestinal lumen. MVID is associated with patient-, family-, and ancestry-unique mutations in the MYO5B gene, encoding the actin-based motor protein myosin Vb. Here, we review the MYO5B gene and all currently known MYO5B mutations and for the first time methodologically categorize these with regard to functional protein domains and recurrence in MYO7A associated with Usher syndrome and other myosins. We also review animal models for MVID and the latest data on functional studies related to the myosin Vb protein. To congregate existing and future information on MVID geno-/phenotypes and facilitate its quick and easy sharing among clinicians and researchers, we have constructed an online MOLGENIS-based international patient registry (www.MVID-central.org). This easily accessible database currently contains detailed information of 137 MVID patients together with reported clinical/phenotypic details and 41 unique MYO5B mutations, of which several unpublished. The future expansion and prospective nature of this registry is expected to improve disease diagnosis, prognosis, and genetic counseling.


Assuntos
Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Sistemas On-Line , Sistema de Registros , Animais , Modelos Animais de Doenças , Enterócitos/metabolismo , Enterócitos/patologia , Humanos , Síndromes de Malabsorção/diagnóstico , Síndromes de Malabsorção/metabolismo , Microvilosidades/genética , Microvilosidades/metabolismo , Mucolipidoses/diagnóstico , Mucolipidoses/metabolismo , Cadeias Pesadas de Miosina/química , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/química , Miosina Tipo V/metabolismo , Miosinas/genética
14.
Gastroenterology ; 142(3): 453-462.e3, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155368

RESUMO

BACKGROUND & AIMS: Short-bowel syndrome usually results from surgical resection of the small intestine for diseases such as intestinal atresias, volvulus, and necrotizing enterocolitis. Patients with congenital short-bowel syndrome (CSBS) are born with a substantial shortening of the small intestine, to a mean length of 50 cm, compared with a normal length at birth of 190-280 cm. They also are born with intestinal malrotation. Because CSBS occurs in many consanguineous families, it is considered to be an autosomal-recessive disorder. We aimed to identify and characterize the genetic factor causing CSBS. METHODS: We performed homozygosity mapping using 610,000 K single-nucleotide polymorphism arrays to analyze the genomes of 5 patients with CSBS. After identifying a gene causing the disease, we determined its expression pattern in human embryos. We also overexpressed forms of the gene product that were and were not associated with CSBS in Chinese Hamster Ovary and T84 cells and generated a zebrafish model of the disease. RESULTS: We identified loss-of-function mutations in Coxsackie- and adenovirus receptor-like membrane protein (CLMP) in CSBS patients. CLMP is a tight-junction-associated protein that is expressed in the intestine of human embryos throughout development. Mutations in CLMP prevented its normal localization to the cell membrane. Knock-down experiments in zebrafish resulted in general developmental defects, including shortening of the intestine and the absence of goblet cells. Because goblet cells are characteristic for the midintestine in zebrafish, which resembles the small intestine in human beings, the zebrafish model mimics CSBS. CONCLUSIONS: Loss-of-function mutations in CLMP cause CSBS in human beings, likely by interfering with tight-junction formation, which disrupts intestinal development. Furthermore, we developed a zebrafish model of CSBS.


Assuntos
Intestino Delgado/anormalidades , Mutação de Sentido Incorreto , Receptores Virais/genética , Síndrome do Intestino Curto/genética , Adolescente , Adulto , Animais , Células CHO , Criança , Pré-Escolar , Proteína de Membrana Semelhante a Receptor de Coxsackie e Adenovirus , Cricetinae , Cricetulus , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Predisposição Genética para Doença , Heterozigoto , Homozigoto , Humanos , Lactente , Recém-Nascido , Intestino Delgado/metabolismo , Masculino , Morfogênese , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores Virais/metabolismo , Síndrome do Intestino Curto/embriologia , Síndrome do Intestino Curto/metabolismo , Síndrome do Intestino Curto/patologia , Transfecção , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
15.
J Neuroinflammation ; 9: 198, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22894638

RESUMO

BACKGROUND: Neuroprotective and neurotrophic properties of leukemia inhibitory factor (LIF) have been widely reported. In the central nervous system (CNS), astrocytes are the major source for LIF, expression of which is enhanced following disturbances leading to neuronal damage. How astrocytic LIF expression is regulated, however, has remained an unanswered question. Since neuronal stress is associated with production of extracellular adenosine, we investigated whether LIF expression in astrocytes was mediated through adenosine receptor signaling. METHODS: Mouse cortical neuronal and astrocyte cultures from wild-type and adenosine A(2B) receptor knock-out animals, as well as adenosine receptor agonists/antagonists and various enzymatic inhibitors, were used to study LIF expression and release in astrocytes. When needed, a one-way analysis of variance (ANOVA) followed by Bonferroni post-hoc test was used for statistical analysis. RESULTS: We show here that glutamate-stressed cortical neurons induce LIF expression through activation of adenosine A(2B) receptor subtype in cultured astrocytes and require signaling of protein kinase C (PKC), mitogen-activated protein kinases (MAPKs: p38 and ERK1/2), and the nuclear transcription factor (NF)-κB. Moreover, LIF concentration in the supernatant in response to 5'-N-ethylcarboxamide (NECA) stimulation was directly correlated to de novo protein synthesis, suggesting that LIF release did not occur through a regulated release pathway. Immunocytochemistry experiments show that LIF-containing vesicles co-localize with clathrin and Rab11, but not with pHogrin, Chromogranin (Cg)A and CgB, suggesting that LIF might be secreted through recycling endosomes. We further show that pre-treatment with supernatants from NECA-treated astrocytes increased survival of cultured cortical neurons against glutamate, which was absent when the supernatants were pre-treated with an anti-LIF neutralizing antibody. CONCLUSIONS: Adenosine from glutamate-stressed neurons induces rapid LIF release in astrocytes. This rapid release of LIF promotes the survival of cortical neurons against excitotoxicity.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Fármacos Atuantes sobre Aminoácidos Excitatórios/toxicidade , Fator Inibidor de Leucemia/metabolismo , Neurônios/metabolismo , Receptor A2B de Adenosina/fisiologia , Animais , Células Cultivadas , Ácido Glutâmico/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/metabolismo , Receptor A2B de Adenosina/uso terapêutico
16.
J Pediatr Gastroenterol Nutr ; 54(4): 491-8, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22441677

RESUMO

BACKGROUND AND OBJECTIVE: : Microvillus inclusion disease (MVID) is a rare congenital enteropathy associated with brush border atrophy and reduced expression of enzymes at the enterocytes' apical surface. MVID is associated with mutations in the MYO5B gene, which is expressed in all epithelial tissues. Whether organs other than the intestine are affected in MVID is unclear. We report 2 patients with MVID that developed renal Fanconi syndrome while receiving total parenteral nutrition. Renal Fanconi syndrome has been correlated to apical plasma membrane defects in kidney proximal tubular epithelial cells. The aim of the present study was to determine whether MYO5B mutations in these patients correlate with similar apical plasma membrane defects in renal tubular epithelial cells as observed in the intestine. METHODS: : Biopsies from kidney, duodenum, ileum, jejunum, and colon of 2 patients with MVID carrying MYO5B mutations and of age-matched controls were fixed in paraffin and analyzed with immunohistochemistry and transmission electron microscopy. RESULTS: : Structural defects of the brush border and apical recycling endosome organization are observed in enterocytes of all of the segments of the small intestine and colon. MYO5B mutations in patients with MVID with renal Fanconi syndrome do not correlate with aberrant apical plasma membrane morphology or altered apical recycling endosome organization in renal tubular epithelial cells. CONCLUSIONS: : MYO5B mutations have divergent effects on the apical membrane system in kidney and intestinal epithelial cells. Epithelial defects presented in MVID are therefore likely triggered by intestine-specific factors, the identification of which may provide new targets and open avenues for the development of alternative therapeutic strategies to combat this devastating disease.


Assuntos
Síndrome de Fanconi/genética , Síndrome de Fanconi/fisiopatologia , Síndromes de Malabsorção/genética , Síndromes de Malabsorção/fisiopatologia , Mucolipidoses/genética , Mucolipidoses/fisiopatologia , Mutação , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Biópsia , Duodeno/metabolismo , Duodeno/patologia , Endossomos/genética , Endossomos/metabolismo , Células Epiteliais/metabolismo , Síndrome de Fanconi/etiologia , Humanos , Íleo/metabolismo , Íleo/patologia , Corpos de Inclusão/genética , Lactente , Recém-Nascido , Intestino Delgado/patologia , Rim/metabolismo , Rim/patologia , Síndromes de Malabsorção/complicações , Masculino , Microscopia Eletrônica de Transmissão , Microvilosidades/genética , Microvilosidades/patologia , Mucolipidoses/complicações , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/metabolismo
17.
J Clin Med ; 11(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35893420

RESUMO

Microvillus inclusion disease (MVID) is a rare, inherited, congenital, diarrheal disorder that is invariably fatal if left untreated. Within days after birth, MVID presents as a life-threatening emergency characterized by severe dehydration, metabolic acidosis, and weight loss. Diagnosis is cumbersome and can take a long time. Whether MVID could be diagnosed before birth is not known. Anecdotal reports of MVID-associated fetal bowel abnormalities suspected by ultrasonography (that is, dilated bowel loops and polyhydramnios) have been published. These are believed to be rare, but their prevalence in MVID has not been investigated. Here, we have performed a comprehensive retrospective study of 117 published MVID cases spanning three decades. We find that fetal bowel abnormalities in MVID occurred in up to 60% of cases of MVID for which prenatal ultrasonography or pregnancy details were reported. Suspected fetal bowel abnormalities appeared in the third trimester of pregnancy and correlated with postnatal, early-onset diarrhea and case-fatality risk during infancy. Fetal bowel dilation correlated with MYO5B loss-of-function variants. In conclusion, MVID has already started during fetal life in a significant number of cases. Genetic testing for MVID-causing gene variants in cases where fetal bowel abnormalities are suspected by ultrasonography may allow for the prenatal diagnosis of MVID in a significant percentage of cases, enabling optimal preparation for neonatal intensive care.

18.
Cell Mol Gastroenterol Hepatol ; 14(2): 295-310, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35421597

RESUMO

BACKGROUND & AIMS: UNC45A is a myosin (co-)chaperone, and mutations in the UNC45A gene were recently identified in osteo-oto-hepato-enteric (O2HE) syndrome patients presenting with congenital diarrhea and intrahepatic cholestasis. Congenital diarrhea and intrahepatic cholestasis are also the prime symptoms in patients with microvillus inclusion disease (MVID) and mutations in MYO5B, encoding the recycling endosome-associated myosin Vb. The aim of this study was to determine whether UNC45A and myosin Vb are functionally linked. METHODS: CRISPR-Cas9 gene editing and site-directed mutagenesis were performed with intestinal epithelial and hepatocellular cell lines, followed by Western blotting, quantitative polymerase chain reaction, and scanning electron and/or confocal fluorescence microscopy to determine the relationship between (mutants of) UNC45A and myosin Vb. RESULTS: UNC45A depletion in intestinal and hepatic cells reduced myosin Vb protein expression, and in intestinal epithelial cells, it affected 2 myosin Vb-dependent processes that underlie MVID pathogenesis: rat sarcoma-associated binding protein (RAB)11A-positve recycling endosome positioning and microvilli development. Reintroduction of UNC45A in UNC45A-depleted cells restored myosin Vb expression, and reintroduction of UNC45A or myosin Vb, but not the O2HE patient UNC45A-c.1268T>A variant, restored recycling endosome positioning and microvilli development. The O2HE patient-associated p.V423D substitution, encoded by the UNC45A-c.1268T>A variant, impaired UNC45A protein stability but as such not the ability of UNC45A to promote myosin Vb expression and microvilli development. CONCLUSIONS: A functional relationship exists between UNC45A and myosin Vb, thereby connecting 2 rare congenital diseases with overlapping enteropathy at the molecular level. Protein instability rather than functional impairment underlies the pathogenicity of the O2HE syndrome-associated UNC45A-p.V423D mutation.


Assuntos
Colestase Intra-Hepática , Diarreia , Peptídeos e Proteínas de Sinalização Intracelular , Síndromes de Malabsorção , Mucolipidoses , Miosina Tipo V , Colestase Intra-Hepática/genética , Diarreia/congênito , Diarreia/genética , Enterócitos/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Síndromes de Malabsorção/genética , Microvilosidades/patologia , Mucolipidoses/genética , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas/metabolismo , Doenças Raras
19.
Methods Mol Biol ; 2544: 71-82, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36125710

RESUMO

Cell polarity and formation of bile canaliculi can be achieved in hepatocytes which are generated from patient-derived induced pluripotent stem cells. This allows for the study of endogenous mutant proteins, patient-specific pathogenesis, and drug responses for diseases where hepatocyte polarity and bile canaliculi play a key role. Here, we describe a step-by-step protocol for the generation of bile canaliculi-forming hepatocytes from induced pluripotent stem cells and their evaluation.


Assuntos
Canalículos Biliares , Células-Tronco Pluripotentes , Canalículos Biliares/metabolismo , Células Cultivadas , Hepatócitos/metabolismo , Humanos , Proteínas Mutantes/metabolismo , Células-Tronco Pluripotentes/metabolismo
20.
Oncogene ; 41(49): 5279-5288, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36316444

RESUMO

Colorectal cancer causes >900,000 deaths every year and a deeper understanding of the molecular mechanisms underlying this disease will contribute to improve its clinical management and survival. Myosin Vb (MYO5B) regulates intracellular vesicle trafficking, and inactivation of this myosin disrupts the polarization and differentiation of intestinal epithelial cells causing microvillous inclusion disease (MVID), a rare congenital disorder characterized by intractable life-threatening diarrhea. Here, we show that the loss Myosin Vb interfered with the differentiation/polarization of colorectal cancer cells. Although modulation of Myosin Vb expression did not affect the proliferation of colon cancer cells, MYO5B inactivation increased their migration, invasion, and metastatic potential. Moreover, Myo5b inactivation in an intestine-specific knockout mouse model caused a >15-fold increase in the number of azoxymethane-initiated small intestinal tumors. Consistently, reduced expression of Myosin Vb in a cohort of 155 primary colorectal tumors was associated with shorter patient survival. In conclusion, we show here that loss of Myosin Vb reduces polarization/differentiation of colon cancer cells while enhancing their metastatic potential, demonstrating a tumor suppressor function for this myosin. Moreover, reduced expression of Myosin Vb in primary tumors identifies a subset of poor prognosis colorectal cancer patients that could benefit from more aggressive therapeutic regimens.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , Miosina Tipo V , Animais , Camundongos , Neoplasias do Colo/patologia , Neoplasias Colorretais/patologia , Enterócitos/metabolismo , Enterócitos/patologia , Genes Supressores de Tumor , Camundongos Knockout , Cadeias Pesadas de Miosina/genética , Miosina Tipo V/genética , Miosina Tipo V/metabolismo , Miosinas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA