Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Eur Radiol ; 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789792

RESUMO

BACKGROUND: The aim of our current systematic dynamic phantom study was first, to optimize reconstruction parameters of coronary CTA (CCTA) acquired on photon counting CT (PCCT) for coronary artery calcium (CAC) scoring, and second, to assess the feasibility of calculating CAC scores from CCTA, in comparison to reference calcium scoring CT (CSCT) scans. METHODS: In this phantom study, an artificial coronary artery was translated at velocities corresponding to 0, < 60, and 60-75 beats per minute (bpm) within an anthropomorphic phantom. The density of calcifications was 100 (very low), 200 (low), 400 (medium), and 800 (high) mgHA/cm3, respectively. CCTA was reconstructed with the following parameters: virtual non-iodine (VNI), with and without iterative reconstruction (QIR level 2, QIR off, respectively); kernels Qr36 and Qr44f; slice thickness/increment 3.0/1.5 mm and 0.4/0.2 mm. The agreement in risk group classification between CACCCTA and CACCSCT scoring was measured using Cohen weighted linear κ with 95% CI. RESULTS: For CCTA reconstructed with 0.4 mm slice thickness, calcium detectability was perfect (100%). At < 60 bpm, CACCCTA of low, and medium density calcification was underestimated by 53%, and 15%, respectively. However, CACCCTA was not significantly different from CACCSCT of very low, and high-density calcifications. The best risk agreement was achieved when CCTA was reconstructed with QIR off, Qr44f, and 0.4 mm slice thickness (κ = 0.762, 95% CI 0.671-0.853). CONCLUSION: In this dynamic phantom study, the detection of calcifications with different densities was excellent with CCTA on PCCT using thin-slice VNI reconstruction. Agatston scores were underestimated compared to CSCT but agreement in risk classification was substantial. CLINICAL RELEVANCE STATEMENT: Photon counting CT may enable the implementation of coronary artery calcium scoring from coronary CTA in daily clinical practice. KEY POINTS: Photon-counting CTA allows for excellent detectability of low-density calcifications at all heart rates. Coronary artery calcium scoring from coronary CTA acquired on photon counting CT is feasible, although improvement is needed. Adoption of the standard acquisition and reconstruction protocol for calcium scoring is needed for improved quantification of coronary artery calcium to fully employ the potential of photon counting CT.

2.
Eur Radiol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940711

RESUMO

OBJECTIVES: To compare coronary artery calcification (CAC) scores measured on virtual non-contrast (VNC) and virtual non-iodine (VNI) reconstructions computed from coronary computed tomography angiography (CCTA) using photon-counting computed tomography (PCCT) to true non-contrast (TNC) images. METHODS: We included 88 patients (mean age = 59 years ± 13.5, 69% male) who underwent a TNC coronary calcium scan followed by CCTA on PCCT. VNC images were reconstructed in 87 patients and VNI in 88 patients by virtually removing iodine from the CCTA images. For all reconstructions, CAC scores were determined, and patients were classified into risk categories. The overall agreement of the reconstructions was analyzed by Bland-Altman plots and the level of matching classifications. RESULTS: The median CAC score on TNC was 27.8 [0-360.4] compared to 8.5 [0.2-101.6] (p < 0.001) on VNC and 72.2 [1.3-398.8] (p < 0.001) on VNI. Bland-Altman plots depicted a bias of 148.8 (ICC = 0.82, p < 0.001) and - 57.7 (ICC = 0.95, p < 0.001) for VNC and VNI, respectively. Of all patients with CACTNC = 0, VNC reconstructions scored 63% of the patients correctly, while VNI scored 54% correctly. Of the patients with CACTNC > 0, VNC and VNI reconstructions detected the presence of coronary calcium in 90% and 92% of the patients. CACVNC tended to underestimate CAC score, whereas CACVNI overestimated, especially in the lower risk categories. According to the risk categories, VNC misclassified 55% of the patients, while VNI misclassified only 32%. CONCLUSION: Compared to TNC images, VNC underestimated and VNI overestimated the actual CAC scores. VNI reconstructions quantify and classify coronary calcification scores more accurately than VNC reconstructions. CLINICAL RELEVANCE STATEMENT: Photon-counting CT enables spectral imaging, which might obviate the need for non-contrast enhanced coronary calcium scoring, but optimization is necessary for the clinical implementation of the algorithms. KEY POINTS: • Photon-counting computed tomography uses spectral information to virtually remove the signal of contrast agents from contrast-enhanced scans. • Virtual non-contrast reconstructions tend to underestimate coronary artery calcium scores compared to true non-contrast images, while virtual non-iodine reconstructions tend to overestimate the calcium scores. • Virtual non-iodine reconstructions might obviate the need for non-contrast enhanced calcium scoring, but optimization is necessary for the clinical implementation of the algorithms.

3.
Eur Radiol ; 33(7): 4668-4675, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36729174

RESUMO

PURPOSE: To systematically assess the radiation dose reduction potential of coronary artery calcium (CAC) assessments with photon-counting computed tomography (PCCT) by changing the tube potential for different patient sizes with a dynamic phantom. METHODS: A hollow artery, containing three calcifications of different densities, was translated at velocities corresponding to 0, < 60, 60-75, and > 75 beats per minute within an anthropomorphic phantom. Extension rings were used to simulate average- and large -sized patients. PCCT scans were made with the reference clinical protocol (tube potential of 120 kilovolt (kV)), and with 70, 90, Sn100, Sn140, and 140 kV at identical image quality levels. All acquisitions were reconstructed at a virtual monoenergetic energy level of 70 keV. For each calcification, Agatston scores and contrast-to-noise ratios (CNR) were determined, and compared to the reference with Wilcoxon signed-rank tests, with p < 0.05 indicating significant differences. RESULTS: A decrease in radiation dose (22%) was achieved at Sn100 kV for the average-sized phantom. For the large phantom, Sn100 and Sn140 kV resulted in a decrease in radiation doses of 19% and 3%, respectively. Irrespective of CAC density, Sn100 and 140 kVp did not result in significantly different CNR. Only at Sn100 kV were there no significant differences in Agatston scores for all CAC densities, heart rates, and phantom sizes. CONCLUSION: PCCT at tube voltage of 100 kV with added tin filtration and reconstructed at 70 keV enables a ≥ 19% dose reduction compared to 120 kV, independent of phantom size, CAC density, and heart rate. KEY POINTS: • Photon-counting CT allows for reduced radiation dose acquisitions (up to 19%) for coronary calcium assessment by reducing tube voltage while reconstructing at a normal monoE level of 70 keV. • Tube voltage reduction is possible for medium and large patient sizes, without affecting the Agatston score outcome.


Assuntos
Calcinose , Cálcio , Humanos , Vasos Coronários/diagnóstico por imagem , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas
4.
Pediatr Radiol ; 53(4): 649-659, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36307546

RESUMO

Imaging plays a pivotal role in the noninvasive assessment of cystic fibrosis (CF)-related lung damage, which remains the main cause of morbidity and mortality in children with CF. The development of new imaging techniques has significantly changed clinical practice, and advances in therapies have posed diagnostic and monitoring challenges. The authors summarise these challenges and offer new perspectives in the use of imaging for children with CF for both clinicians and radiologists. This article focuses on chest radiography and CT, which are the two main radiologic techniques used in most cystic fibrosis centres. Advantages and disadvantages of radiography and CT for imaging in CF are described, with attention to new developments in these techniques, such as the use of artificial intelligence (AI) image analysis strategies to improve the sensitivity of radiography and CT and the introduction of the photon-counting detector CT scanner to increase spatial resolution at no dose expense.


Assuntos
Fibrose Cística , Criança , Humanos , Fibrose Cística/diagnóstico por imagem , Inteligência Artificial , Pulmão , Tomografia Computadorizada por Raios X/métodos , Radiografia
5.
Eur Radiol ; 32(1): 442-447, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34327574

RESUMO

OBJECTIVE: To assess the influence of breathing state on the accuracy of a 3D camera for body contour detection and patient positioning in thoracic CT. MATERIALS AND METHODS: Patients who underwent CT of the thorax with both an inspiratory and expiratory scan were prospectively included for analysis of differences in the ideal table height at different breathing states. For a subgroup, an ideal table height suggestion based on 3D camera images at both breathing states was available to assess their influence on patient positioning accuracy. Ideal patient positioning was defined as the table height at which the scanner isocenter coincides with the patient's isocenter. RESULTS: The mean (SD) difference of the ideal table height between the inspiratory and the expiratory breathing state among the 64 included patients was 10.6 mm (4.5) (p < 0.05). The mean (SD) positioning accuracy, i.e., absolute deviation from the ideal table height, within the subgroup (n = 43) was 4.6 mm (7.0) for inspiratory scans and 7.1 mm (7.7) for expiratory scans (p < 0.05) when using corresponding 3D camera images. The mean (SD) accuracy was 14.7 mm (7.4) (p < 0.05) when using inspiratory camera images on expiratory scans; vice versa, the accuracy was 3.1 mm (9.5) (p < 0.05). CONCLUSION: A 3D camera allows for accurate and precise patient positioning if the camera image and the subsequent CT scan are acquired in the same breathing state. It is recommended to perform an expiratory planning image when acquiring a thoracic CT scan in both the inspiratory and expiratory breathing state. KEY POINTS: • A 3D camera for body contour detection allows for accurate and precise patient positioning if the camera image and the subsequent CT scan are acquired in the same breathing state. • It is recommended to perform an expiratory planning image when acquiring a thoracic CT scan in both the inspiratory and expiratory breathing state.


Assuntos
Tórax , Tomografia Computadorizada por Raios X , Humanos , Imageamento Tridimensional , Posicionamento do Paciente , Estudos Retrospectivos
6.
Eur Radiol ; 32(8): 5201-5209, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35230517

RESUMO

OBJECTIVES: The aim of this study was to determine mono-energetic (monoE) level-specific photon-counting CT (PCCT) Agatston thresholds, to yield monoE level independent Agatston scores validated with a dynamic cardiac phantom. Also, we examined the potential of dose reduction for PCCT coronary artery calcium (CAC) studies, when reconstructed at low monoE levels. METHODS: Theoretical CAC monoE thresholds were calculated with data from the National Institute of Standards and Technology (NIST) database. Artificial CAC with three densities were moved in an anthropomorphic thorax phantom at 0 and 60-75 bpm, and scanned at full and 50% dose on a first-generation dual-source PCCT. For all densities, Agatston scores and maximum CT numbers were determined. Agatston scores were compared with the reference at full dose and 70 keV monoE level; deviations (95% confidence interval) < 10% were deemed to be clinically not-relevant. RESULTS: Averaged over all monoE levels, measured CT numbers deviated from theoretical CT numbers by 6%, 13%, and - 4% for low-, medium-, and high-density CAC, respectively. At 50% reduced dose and 60-75 bpm, Agatston score deviations were non-relevant for 60 to 100 keV and 60 to 120 keV for medium- and high-density CAC, respectively. CONCLUSION: MonoE level-specific Agatston score thresholds resulted in similar scores as in standard reconstructions at 70 keV. PCCT allows for a potential dose reduction of 50% for CAC scoring using low monoE reconstructions for medium- and high-density CAC. KEY POINTS: • Mono-energy level-specific Agatston thresholds allow for reproducible coronary artery calcium quantification on mono-energetic images. • Increased calcium contrast-to-noise ratio at reduced mono-energy levels allows for coronary artery calcium quantification at 50% reduced radiation dose for medium- and high-density calcifications.


Assuntos
Cálcio , Doença da Artéria Coronariana , Doença da Artéria Coronariana/diagnóstico por imagem , Vasos Coronários/diagnóstico por imagem , Redução da Medicação , Humanos , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos
7.
Eur Radiol ; 31(1): 131-138, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32749591

RESUMO

OBJECTIVE: To assess the accuracy of a 3D camera for body contour detection in pediatric patient positioning in CT compared with routine manual positioning by radiographers. METHODS AND MATERIALS: One hundred and ninety-one patients, with and without fixation aid, which underwent CT of the head, thorax, and/or abdomen on a scanner with manual table height selection and with table height suggestion by a 3D camera were retrospectively included. The ideal table height was defined as the position at which the scanner isocenter coincides with the patient's isocenter. Table heights suggested by the camera and selected by the radiographer were compared with the ideal height. RESULTS: For pediatric patients without fixation aid like a baby cradle or vacuum cushion and positioned by radiographers, the median (interquartile range) absolute table height deviation in mm was 10.2 (16.8) for abdomen, 16.4 (16.6) for head, 4.1 (5.1) for thorax-abdomen, and 9.7 (9.7) for thorax CT scans. The deviation was less for the 3D camera: 3.1 (4.7) for abdomen, 3.9 (6.3) for head, 2.2 (4.3) for thorax-abdomen, and 4.8 (6.7) for thorax CT scans (p < 0.05 for all body parts combined). CONCLUSION: A 3D camera for body contour detection allows for automated and more accurate pediatric patient positioning than manual positioning done by radiographers, resulting in overall significantly smaller deviations from the ideal table height. The 3D camera may be also useful in the positioning of patients with fixation aid; however, evaluation of possible improvements in positioning accuracy was limited by the small sample size. KEY POINTS: • A 3D camera for body contour detection allows for automated and accurate pediatric patient positioning in CT. • A 3D camera outperformed radiographers in positioning pediatric patients without a fixation aid in CT. • Positioning of pediatric patients with fixation aid was feasible using the 3D camera, but no definite conclusions were drawn regarding the positioning accuracy due to the small sample size.


Assuntos
Posicionamento do Paciente , Tórax , Abdome , Criança , Humanos , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
8.
Recent Results Cancer Res ; 216: 31-110, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32594384

RESUMO

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the cancer cells but should also take aspects of the tumor microenvironment into account. This requires an understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology, this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Assuntos
Imageamento por Ressonância Magnética , Neoplasias/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Humanos , Oncologia
9.
Eur Radiol ; 30(6): 3346-3355, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32072259

RESUMO

OBJECTIVE: To assess the dose reduction potential of a calcium-aware reconstruction technique, which aims at tube voltage-independent computed tomography (CT) numbers for calcium. METHODS AND MATERIALS: A cardiothoracic phantom, mimicking three different patient sizes, was scanned with two calcium inserts (named D100 and CCI), containing calcifications varying in size and density. Tube voltage was varied both manually (range 70-150 and Sn100 kVp) and automatically. Tube current was automatically adapted to maintain reference image quality defined at 120 kVp. Data was reconstructed with the standard reconstruction technique (kernel Qr36) and the calcium-aware reconstruction technique (kernel Sa36). We assessed the radiation dose reduction potential (volumetric CT dose index values (CTDIvol)), noise (standard deviation (SD)), mean CT number (HU) of each calcification, and Agatston scores for varying kVp. Results were compared with the reference acquired at 120 kVp and reconstructed with Qr36. RESULTS: Automatic selection of the optimal tube voltage resulted in a CTDIvol reduction of 22%, 15%, and 12% compared with the reference for the small, medium, and large phantom, respectively. CT numbers differed up to 64% for the standard reconstruction and 11% for the calcium-aware reconstruction. Similarly, Agatston scores deviated up to 40% and 8% for the standard and calcium-aware reconstruction technique, respectively. CONCLUSION: CT numbers remained consistent with comparable calcium scores when the calcium-aware image reconstruction technique was applied with varying tube voltage. Less consistency was observed in small calcifications with low density. Automatic reduction of tube voltage resulted in a dose reduction of up to 22%. KEY POINTS: • The calcium-aware image reconstruction technique allows for consistent CT numbers when varying the tube voltage. • Automatic reduction of tube voltage results in a reduced radiation exposure of up to 22%. • This study stresses the known limitations of the current Agatston score technique.


Assuntos
Doença da Artéria Coronariana/diagnóstico por imagem , Imagens de Fantasmas , Doses de Radiação , Tomografia Computadorizada por Raios X/métodos , Calcificação Vascular/diagnóstico por imagem , Algoritmos , Calcinose/diagnóstico por imagem , Cálcio , Tomografia Computadorizada de Feixe Cônico , Vasos Coronários/diagnóstico por imagem , Humanos , Processamento de Imagem Assistida por Computador/métodos , Exposição à Radiação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos
10.
Eur Radiol ; 29(4): 2079-2088, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30306328

RESUMO

OBJECTIVE: To assess the accuracy of a 3D camera for body contour detection and patient positioning in CT compared to routine manual positioning by radiographers. METHODS AND MATERIALS: Four hundred twenty-three patients that underwent CT of the head, thorax, and/or abdomen on a scanner with manual table height selection and 254 patients on a scanner with table height suggestion by a 3D camera were retrospectively included. Within the camera group, table height suggestion was based on infrared body contour detection and fitting of a scalable patient model to the 3D data. Proper positioning was defined as the ideal table height at which the scanner isocenter coincides with the patient's isocenter. Patient isocenter was computed by automatic skin contour extraction in each axial image and averaged over all images. Table heights suggested by the camera and selected by the radiographer were compared with the ideal height. RESULTS: Median (interquartile range) absolute table height deviation in millimeter was 12.0 (21.6) for abdomen, 12.2 (12.0) for head, 13.4 (17.6) for thorax-abdomen, and 14.7 (17.3) for thorax CT scans positioned by radiographers. The deviation was significantly less (p < 0.01) for the 3D camera at 6.3 (6.9) for abdomen, 9.5 (6.8) for head, 6.0 (6.1) for thorax-abdomen, and 5.4 (6.4) mm for thorax. CONCLUSION: A 3D camera for body contour detection allows for accurate patient positioning, thereby outperforming manual positioning done by radiographers, resulting in significantly smaller deviations from the ideal table height. However, radiographers remain indispensable when the system fails or in challenging cases. KEY POINTS: • A 3D camera for body contour detection allows for accurate patient positioning. • A 3D camera outperformed radiographers in patient positioning in CT. • Deviation from ideal table height was more extreme for patients positioned by radiographers for all body parts.


Assuntos
Abdome/diagnóstico por imagem , Cabeça/diagnóstico por imagem , Imageamento Tridimensional/instrumentação , Posicionamento do Paciente/métodos , Tórax/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Imagem Corporal Total/métodos , Feminino , Humanos , Masculino , Estudos Retrospectivos
11.
Eur Radiol ; 28(5): 2159-2168, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29234912

RESUMO

OBJECTIVES: Multidetector CT (MDCT) is a valuable tool for functional prosthetic heart valve (PHV) assessment. However, radiation exposure remains a concern. We assessed a novel CT-acquisition protocol for comprehensive PHV evaluation at limited dose. METHODS: Patients with a PHV were scanned using a third-generation dual-source CT scanner (DSCT) and iterative reconstruction technique (IR). Three acquisitions were obtained: a non-enhanced scan; a contrast-enhanced, ECG-triggered, arterial CT angiography (CTA) scan with reconstructions at each 5 % of the R-R interval; and a delayed high-pitch CTA of the entire chest. Image quality was scored on a five-point scale. Radiation dose was obtained from the reported CT dose index (CTDI) and dose length product (DLP). RESULTS: We analysed 43 CT examinations. Mean image quality score was 4.1±1.4, 4.7±0.5 and 4.2±0.6 for the non-contrast-enhanced, arterial and delayed acquisitions, respectively, with a total mean image quality of 4.3±0.7. Mean image quality for leaflet motion was 3.9±1.4. Mean DLP was 28.2±17.1, 457.3±168.6 and 68.5±47.2 mGy.cm for the non-contrast-enhanced (n=40), arterial (n=43) and delayed acquisition (n=43), respectively. The mean total DLP was 569±208 mGy.cm and mean total radiation dose was 8.3±3.0 mSv (n=43). CONCLUSION: Comprehensive assessment of PHVs is possible using DSCT and IR at moderate radiation dose. KEY POINTS: • Prosthetic heart valve dysfunction is a potentially life-threatening condition. • Dual-source CT can adequately assess valve leaflet motion and anatomy. • We assessed a comprehensive protocol with three acquisitions for PHV evaluation. • This protocol is associated with good image quality and limited dose.


Assuntos
Próteses Valvulares Cardíacas , Valvas Cardíacas/diagnóstico por imagem , Tomografia Computadorizada Multidetectores/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Doses de Radiação
12.
Eur Radiol ; 27(9): 3618-3624, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28127643

RESUMO

OBJECTIVES: The purpose of this study was to assess the efficacy of the renewed dynamic collimator in a third-generation dual source CT (DSCT) scanner and to determine the improvements over the second-generation scanner. METHODS: Collimator efficacy is defined as the percentage overranging dose in terms of dose-length product (DLP) that is blocked by the dynamic collimator relative to the total overranging dose in case of a static collimator. Efficacy was assessed at various pitch values and different scan lengths. The number of additional rotations due to overranging and effective scan length were calculated on the basis of reported scanning parameters. On the basis of these values, the efficacy of the collimator was calculated. RESULTS: The second-generation scanner showed decreased performance of the dynamic collimator at increasing pitch. Efficacy dropped to 10% at the highest pitch. For the third-generation scanner the efficacy remained above 50% at higher pitch. Noise was for some pitch values slightly higher at the edge of the imaged volume, indicating a reduced scan range to reduce the overranging dose. CONCLUSIONS: The improved dynamic collimator in the third-generation scanner blocks the overranging dose for more than 50% and is more capable of shielding radiation dose, especially in high pitch scan modes. KEY POINTS: • Overranging dose is to a large extent blocked by the dynamic collimator • Efficacy is strongly improved within the third-generation DSCT scanner • Reducing the number of additional rotations can reduce overranging with increased noise.


Assuntos
Doses de Radiação , Tomografia Computadorizada Espiral/instrumentação , Tomografia Computadorizada Espiral/métodos , Desenho de Equipamento , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imagens de Fantasmas , Proteção Radiológica/métodos
13.
Eur Respir J ; 47(6): 1706-17, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27076593

RESUMO

Progressive cystic fibrosis (CF) lung disease is the main cause of mortality in CF patients. CF lung disease starts in early childhood. With current standards of care, respiratory function remains largely normal in children and more sensitive outcome measures are needed to monitor early CF lung disease. Chest CT is currently the most sensitive imaging modality to monitor pulmonary structural changes in children and adolescents with CF. To quantify structural lung disease reliably among multiple centres, standardisation of chest CT protocols is needed. SCIFI CF (Standardised Chest Imaging Framework for Interventions and Personalised Medicine in CF) was founded to characterise chest CT image quality and radiation doses among 16 participating European CF centres in 10 different countries. We aimed to optimise CT protocols in children and adolescents among several CF centres. A large variety was found in CT protocols, image quality and radiation dose usage among the centres. However, the performance of all CT scanners was found to be very similar, when taking spatial resolution and radiation dose into account. We conclude that multicentre standardisation of chest CT in children and adolescents with CF can be achieved for future clinical trials.


Assuntos
Fibrose Cística/diagnóstico por imagem , Radiografia Torácica/normas , Tomografia Computadorizada por Raios X/normas , Adolescente , Criança , Pré-Escolar , Ensaios Clínicos como Assunto , Estudos de Coortes , Fibrose Cística/patologia , Progressão da Doença , Europa (Continente) , Humanos , Processamento de Imagem Assistida por Computador , Lactente , Recém-Nascido , Pulmão/diagnóstico por imagem , Pulmão/fisiopatologia , Reconhecimento Automatizado de Padrão , Imagens de Fantasmas , Reprodutibilidade dos Testes , Respiração , Inquéritos e Questionários , Resultado do Tratamento , Adulto Jovem
14.
Am J Respir Crit Care Med ; 189(11): 1328-36, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24697683

RESUMO

Computed tomography (CT) is a sensitive technique to monitor structural changes related to cystic fibrosis (CF) lung disease. It detects structural pulmonary abnormalities such as bronchiectasis and trapped air, at an early stage, before they become apparent with other diagnostic tests. Clinical decisions may be influenced by knowledge of these abnormalities. CT imaging, however, comes with risk related to ionizing radiation exposure. The aim of this review is to discuss the risk of routine CT imaging in patients with CF, using current models of radiation-induced cancer, and to put this risk in perspective with other medical and nonmedical risks. The magnitude of the risk is a complex, controversial matter. Risk analyses have largely been based on a linear no-threshold model, and excess relative and excess absolute risk estimates have been derived mainly from atomic bomb survivors. The estimates have large confidence intervals. Our risk estimates are in concordance with previously reported estimates. A large proportion of radiation to which humans are exposed is from natural background sources and varies widely depending on geographical location. The risk differences due to variation in background radiation can be larger than the risks associated with CF lung disease monitoring by CT. We conclude that the risk related to routine usage of CT in clinical care is small. In addition, a life-limiting disease, such as CF, lowers the risk of radiation-induced cancer. Nonetheless, the use of CT should always be justified and the radiation dose should be kept as low as reasonably achievable.


Assuntos
Bronquiectasia/diagnóstico por imagem , Fibrose Cística/diagnóstico por imagem , Neoplasias Induzidas por Radiação/prevenção & controle , Tomografia Computadorizada por Raios X , Bronquiectasia/etiologia , Criança , Fibrose Cística/complicações , Medicina Baseada em Evidências , Humanos , Monitorização Fisiológica , Neoplasias Induzidas por Radiação/etiologia , Valor Preditivo dos Testes , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/efeitos adversos
15.
Eur J Epidemiol ; 29(4): 293-301, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24748424

RESUMO

Computed tomography (CT) scans are indispensable in modern medicine; however, the spectacular rise in global use coupled with relatively high doses of ionizing radiation per examination have raised radiation protection concerns. Children are of particular concern because they are more sensitive to radiation-induced cancer compared with adults and have a long lifespan to express harmful effects which may offset clinical benefits of performing a scan. This paper describes the design and methodology of a nationwide study, the Dutch Pediatric CT Study, regarding risk of leukemia and brain tumors in children after radiation exposure from CT scans. It is a retrospective record-linkage cohort study with an expected number of 100,000 children who received at least one electronically archived CT scan covering the calendar period since the introduction of digital archiving until 2012. Information on all archived CT scans of these children will be obtained, including date of examination, scanned body part and radiologist's report, as well as the machine settings required for organ dose estimation. We will obtain cancer incidence by record linkage with external databases. In this article, we describe several approaches to the collection of data on archived CT scans, the estimation of radiation doses and the assessment of confounding. The proposed approaches provide useful strategies for data collection and confounder assessment for general retrospective record-linkage studies, particular those using hospital databases on radiological procedures for the assessment of exposure to ionizing or non-ionizing radiation.


Assuntos
Neoplasias Encefálicas/epidemiologia , Bases de Dados Factuais , Leucemia/epidemiologia , Registro Médico Coordenado , Doses de Radiação , Tomografia Computadorizada por Raios X/efeitos adversos , Adolescente , Criança , Pré-Escolar , Seguimentos , Humanos , Incidência , Lactente , Masculino , Neoplasias Induzidas por Radiação/epidemiologia , Países Baixos/epidemiologia , Pediatria , Radiação Ionizante , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Fatores Socioeconômicos , Tomografia Computadorizada por Raios X/métodos , Adulto Jovem
16.
Med Phys ; 51(4): 2924-2932, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358113

RESUMO

BACKGROUND: Photon-counting CT (PCCT) is the next-generation CT scanner that enables improved spatial resolution and spectral imaging. For full spectral processing, higher tube voltages compared to conventional CT are necessary to achieve the required spectral separation. This generated interest in the potential influence of thin slice high tube voltage PCCT on overall image quality and consequently on radiation dose. PURPOSE: This study first evaluated tube voltages and radiation doses applied in patients who underwent coronary CT angiography with PCCT and energy-integrating detector CT (EID-CT). Next, image quality of PCCT and EID-CT was objectively evaluated in a phantom study simulating different patient sizes at these tube voltages and radiation doses. METHODS: We conducted a retrospective analysis of clinical doses of patients scanned on a conventional and PCCT system. Average patient water equivalent diameters for different tube voltages were extracted from the dose reports for both EID-CT and PCCT. A conical phantom made of polyethylene with multiple diameters (26/31/36 cm) representing different patient sizes and containing an iodine insert was scanned with a EID-CT scanner using tube voltages and phantom diameters that match the patient scans and characteristics. Next, phantom scans were made with PCCT at a fixed tube voltage of 120 kV and with CTDIVOL values and phantom diameters identical to the EID-CT scans. Clinical image reconstructions at 0.6 mm slice thickness for conventional CT were compared to PCCT images with 0.4 mm slice thickness. Image quality was quantified using the detectability index (d'), which estimated the visibility of a 3 mm diameter contrast-enhanced coronary artery by considering noise, contrast, resolution, and human visual perception. Alongside d', noise, contrast and resolution were also individually assessed. In addition, the influence of various kernels (Bv40/Bv44/Bv48/Bv56), quantum iterative reconstruction strengths (QIR, 3/4) and monoenergetic levels (40/45/50/55 keV) for PCCT on d' was investigated. RESULTS: In this study, 143 patients were included: 47 were scanned on PCCT (120 kV) and the remaining on EID-CT (74 small-sized at 70 kV, 18 medium-sized at 80 kV and four large-sized at 90 kV). EID-CT showed 7%-17% higher d' than PCCT with Bv40 kernel and strength four for small/medium patients. Lower monoenergetic images (40 keV) helped mitigate the difference to 1%-6%. For large patients, PCCT's detectability was up to 31% higher than EID-CT. PCCT has thinner slices but similar noise levels for similar reconstruction parameters. The noise increased with lower keV levels in PCCT (≈30% increase), but higher QIR strengths reduced noise. PCCT's iodine contrast was stable across patient sizes, while EID-CT had 33% less contrast in large patients than in small-sized patients. CONCLUSION: At 120 kV, thin slice PCCT enables CCTA in phantom scans representing large patients without raising radiation dose or affecting vessel detectability. However, higher doses are needed for small and medium-sized patients to obtain a similar image quality as in EID-CT. The alternative of using lower mono-energetic levels requires further evaluation in clinical practice.


Assuntos
Iodo , Tomografia Computadorizada por Raios X , Humanos , Angiografia Coronária , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos , Imagens de Fantasmas , Doses de Radiação , Fótons
17.
Eur J Radiol ; 171: 111282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38190778

RESUMO

PURPOSE: The study is intended to assess the image quality of ultra-high resolution (UHR) coronary computed tomography angiography (CCTA) performed on dual source photon-counting detector CT (PCD-CT). METHOD: Consecutive patients, who underwent clinically indicated CCTA on PCD-CT (UHR 120x 0.2 mm collimation), were included. CCTA images were reconstructed at 0.2 mm slice thickness with Bv40, Bv44, Bv48 and Bv56 kernels and quantum iterative reconstruction level 4. Contrast-to-noise (CNR) and signal-to-noise ratios (SNR) were quantified from contrast-enhanced blood and subcutaneous adipose tissue. All reconstructions were scored per coronary segment (18-segment model) for presence, image quality, motion artefacts, stack artefacts, plaque presence and composition, and stenosis degree. Image quality was scored by two independent observers. RESULTS: Sixty patients were included (median age 62 [25th - 75th percentile: 53-67] years, 45% male, median calcium score 62 [0-217]). The mean heart rate during scanning was 71 ± 11 bpm. Median CTDIvol was 19 [16-22]mGy and median DLP 243 [198-327]mGy.cm. The SNR was 9.3 ± 2.3 and the CNR was 11.7 ± 2.6. Of the potential 1080 coronary segments (60 patients x 18 segments), 255/256 (reader1/reader2) segments could not be assessed for being absent or non-evaluable due to size. Both readers scored 85% of the segments as excellent or very good (Intraclass Correlation Coefficient: 0.88 (95% CI: 0.87-0.90). Motion artefacts were present in 45(5%) segments, stack artefacts in 60(7%) segments and metal artefacts in 9(1%) segments. CONCLUSION: UHR dual-source PCD-CT CCTA provides excellent or very good image quality in 85% of coronary segments at relatively high heart rates at moderate radiation dose with only limited stack artefacts.


Assuntos
Vasos Coronários , Tomografia Computadorizada por Raios X , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Angiografia Coronária/métodos , Vasos Coronários/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Angiografia por Tomografia Computadorizada/métodos , Coração , Imagens de Fantasmas
18.
Recent Results Cancer Res ; 187: 3-63, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23179877

RESUMO

Imaging in Oncology is rapidly moving from the detection and size measurement of a lesion to the quantitative assessment of metabolic processes and cellular and molecular interactions. Increasing insights into cancer as a complex disease with involvement of the tumor stroma in tumor pathobiological processes have made it clear that for successful control of cancer, treatment strategies should not only be directed at the tumor cells but also targeted at the tumor microenvironment. This requires understanding of the complex molecular and cellular interactions in cancer tissue. Recent developments in imaging technology have increased the possibility to image various pathobiological processes in cancer development and response to treatment. For computed tomography (CT) and magnetic resonance imaging (MRI) various improvements in hardware, software, and imaging probes have lifted these modalities from classical anatomical imaging techniques to techniques suitable to image and quantify various physiological processes and molecular and cellular interactions. Next to a more general overview of possible imaging targets in oncology this chapter provides an overview of the various developments in CT and MRI technology and some specific applications.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neoplasias/patologia , Tomografia Computadorizada por Raios X/métodos , Humanos , Neoplasias/diagnóstico por imagem
19.
Eur Radiol ; 23(3): 614-22, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23052644

RESUMO

OBJECTIVES: To compare the diagnostic performance and radiation exposure of 128-slice dual-source CT coronary angiography (CTCA) protocols to detect coronary stenosis with more than 50 % lumen obstruction. METHODS: We prospectively included 459 symptomatic patients referred for CTCA. Patients were randomized between high-pitch spiral vs. narrow-window sequential CTCA protocols (heart rate below 65 bpm, group A), or between wide-window sequential vs. retrospective spiral protocols (heart rate above 65 bpm, group B). Diagnostic performance of CTCA was compared with quantitative coronary angiography in 267 patients. RESULTS: In group A (231 patients, 146 men, mean heart rate 58 ± 7 bpm), high-pitch spiral CTCA yielded a lower per-segment sensitivity compared to sequential CTCA (89 % vs. 97 %, P = 0.01). Specificity, PPV and NPV were comparable (95 %, 62 %, 99 % vs. 96 %, 73 %, 100 %, P > 0.05) but radiation dose was lower (1.16 ± 0.60 vs. 3.82 ± 1.65 mSv, P < 0.001). In group B (228 patients, 132 men, mean heart rate 75 ± 11 bpm), per-segment sensitivity, specificity, PPV and NPV were comparable (94 %, 95 %, 67 %, 99 % vs. 92 %, 95 %, 66 %, 99 %, P > 0.05). Radiation dose of sequential CTCA was lower compared to retrospective CTCA (6.12 ± 2.58 vs. 8.13 ± 4.52 mSv, P < 0.001). Diagnostic performance was comparable in both groups. CONCLUSION: Sequential CTCA should be used in patients with regular heart rates using 128-slice dual-source CT, providing optimal diagnostic accuracy with as low as reasonably achievable (ALARA) radiation dose.


Assuntos
Angiografia Coronária/estatística & dados numéricos , Doença da Artéria Coronariana/diagnóstico por imagem , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/métodos , Tomografia Computadorizada por Raios X/estatística & dados numéricos , Angiografia Coronária/métodos , Doença da Artéria Coronariana/epidemiologia , Feminino , Humanos , Incidência , Masculino , Pessoa de Meia-Idade , Países Baixos/epidemiologia , Prevalência , Reprodutibilidade dos Testes , Fatores de Risco , Sensibilidade e Especificidade , Tomografia Computadorizada por Raios X/métodos
20.
Radiol Cardiothorac Imaging ; 5(2): e220318, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37124634

RESUMO

Photon-counting detector CT (PCD CT) has increasingly garnered interest in cardiothoracic imaging due to its high spatial resolution and ability to perform spectral imaging. CT plays an important role in the planning and postprocedural assessment of transcatheter aortic valve replacement (TAVR). Limitations of current CT technology resulting in blooming and metal artifacts may be addressed with PCD CT. This case series demonstrates the potential advantages of PCD CT in patients prior to and post-TAVR. In TAVR planning, PCD CT allowed for a detailed depiction of the aortic valve, aortic root, coronary arteries, and potential vascular access routes. The high-spatial-resolution reconstructions enabled assessment of hypoattenuating leaflet thickening and periprosthetic leakage for prosthetic valves. This study shows promising initial results, but further research is needed to determine the clinical impact of PCD CT in patients prior to and post-TAVR. Keywords: Transcatheter Aortic Valve Replacement, Cardiac, Coronary Arteries, Heart, Valves, Photon-counting Detector CT © RSNA, 2023 An earlier incorrect version appeared online. This article was corrected on October 27, 2023.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA