Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Cell ; 172(1-2): 373-386.e10, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29224780

RESUMO

Breast cancer (BC) comprises multiple distinct subtypes that differ genetically, pathologically, and clinically. Here, we describe a robust protocol for long-term culturing of human mammary epithelial organoids. Using this protocol, >100 primary and metastatic BC organoid lines were generated, broadly recapitulating the diversity of the disease. BC organoid morphologies typically matched the histopathology, hormone receptor status, and HER2 status of the original tumor. DNA copy number variations as well as sequence changes were consistent within tumor-organoid pairs and largely retained even after extended passaging. BC organoids furthermore populated all major gene-expression-based classification groups and allowed in vitro drug screens that were consistent with in vivo xeno-transplantations and patient response. This study describes a representative collection of well-characterized BC organoids available for cancer research and drug development, as well as a strategy to assess in vitro drug response in a personalized fashion.


Assuntos
Neoplasias da Mama/patologia , Heterogeneidade Genética , Organoides/patologia , Bancos de Tecidos , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Células Cultivadas , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Feminino , Humanos , Camundongos , Camundongos Nus , Organoides/efeitos dos fármacos , Medicina de Precisão/métodos
2.
Mol Cell ; 81(22): 4692-4708.e9, 2021 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-34555355

RESUMO

Inhibitors of poly(ADP-ribose) (PAR) polymerase (PARPi) have entered the clinic for the treatment of homologous recombination (HR)-deficient cancers. Despite the success of this approach, preclinical and clinical research with PARPi has revealed multiple resistance mechanisms, highlighting the need for identification of novel functional biomarkers and combination treatment strategies. Functional genetic screens performed in cells and organoids that acquired resistance to PARPi by loss of 53BP1 identified loss of LIG3 as an enhancer of PARPi toxicity in BRCA1-deficient cells. Enhancement of PARPi toxicity by LIG3 depletion is dependent on BRCA1 deficiency but independent of the loss of 53BP1 pathway. Mechanistically, we show that LIG3 loss promotes formation of MRE11-mediated post-replicative ssDNA gaps in BRCA1-deficient and BRCA1/53BP1 double-deficient cells exposed to PARPi, leading to an accumulation of chromosomal abnormalities. LIG3 depletion also enhances efficacy of PARPi against BRCA1-deficient mammary tumors in mice, suggesting LIG3 as a potential therapeutic target.


Assuntos
Proteína BRCA1/genética , DNA Ligase Dependente de ATP/genética , DNA de Cadeia Simples , Proteína Homóloga a MRE11/genética , Neoplasias Ovarianas/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas de Ligação a Poli-ADP-Ribose/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética , Animais , Biópsia , Sistemas CRISPR-Cas , Linhagem Celular , Núcleo Celular/metabolismo , Proliferação de Células , Aberrações Cromossômicas , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Feminino , Humanos , Lentivirus/genética , Neoplasias Mamárias Animais , Camundongos , Mutação , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Interferente Pequeno/metabolismo , Transgenes
3.
Nature ; 608(7923): 609-617, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35948633

RESUMO

Somatic hotspot mutations and structural amplifications and fusions that affect fibroblast growth factor receptor 2 (encoded by FGFR2) occur in multiple types of cancer1. However, clinical responses to FGFR inhibitors have remained variable1-9, emphasizing the need to better understand which FGFR2 alterations are oncogenic and therapeutically targetable. Here we apply transposon-based screening10,11 and tumour modelling in mice12,13, and find that the truncation of exon 18 (E18) of Fgfr2 is a potent driver mutation. Human oncogenomic datasets revealed a diverse set of FGFR2 alterations, including rearrangements, E1-E17 partial amplifications, and E18 nonsense and frameshift mutations, each causing the transcription of E18-truncated FGFR2 (FGFR2ΔE18). Functional in vitro and in vivo examination of a compendium of FGFR2ΔE18 and full-length variants pinpointed FGFR2-E18 truncation as single-driver alteration in cancer. By contrast, the oncogenic competence of FGFR2 full-length amplifications depended on a distinct landscape of cooperating driver genes. This suggests that genomic alterations that generate stable FGFR2ΔE18 variants are actionable therapeutic targets, which we confirmed in preclinical mouse and human tumour models, and in a clinical trial. We propose that cancers containing any FGFR2 variant with a truncated E18 should be considered for FGFR-targeted therapies.


Assuntos
Éxons , Deleção de Genes , Terapia de Alvo Molecular , Neoplasias , Oncogenes , Inibidores de Proteínas Quinases , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos , Animais , Éxons/genética , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Oncogenes/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo
4.
EMBO J ; 39(5): e102169, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-31930530

RESUMO

Genetically engineered mouse models (GEMMs) of cancer have proven to be of great value for basic and translational research. Although CRISPR-based gene disruption offers a fast-track approach for perturbing gene function and circumvents certain limitations of standard GEMM development, it does not provide a flexible platform for recapitulating clinically relevant missense mutations in vivo. To this end, we generated knock-in mice with Cre-conditional expression of a cytidine base editor and tested their utility for precise somatic engineering of missense mutations in key cancer drivers. Upon intraductal delivery of sgRNA-encoding vectors, we could install point mutations with high efficiency in one or multiple endogenous genes in situ and assess the effect of defined allelic variants on mammary tumorigenesis. While the system also produces bystander insertions and deletions that can stochastically be selected for when targeting a tumor suppressor gene, we could effectively recapitulate oncogenic nonsense mutations. We successfully applied this system in a model of triple-negative breast cancer, providing the proof of concept for extending this flexible somatic base editing platform to other tissues and tumor types.


Assuntos
Neoplasias da Mama/genética , Sistemas CRISPR-Cas , Edição de Genes , Animais , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Mutação
5.
Nucleic Acids Res ; 50(13): 7420-7435, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35819193

RESUMO

Crosslink repair depends on the Fanconi anemia pathway and translesion synthesis polymerases that replicate over unhooked crosslinks. Translesion synthesis is regulated via ubiquitination of PCNA, and independently via translesion synthesis polymerase REV1. The division of labor between PCNA-ubiquitination and REV1 in interstrand crosslink repair is unclear. Inhibition of either of these pathways has been proposed as a strategy to increase cytotoxicity of platinating agents in cancer treatment. Here, we defined the importance of PCNA-ubiquitination and REV1 for DNA in mammalian ICL repair. In mice, loss of PCNA-ubiquitination, but not REV1, resulted in germ cell defects and hypersensitivity to cisplatin. Loss of PCNA-ubiquitination, but not REV1 sensitized mammalian cancer cell lines to cisplatin. We identify polymerase Kappa as essential in tolerating DNA damage-induced lesions, in particular cisplatin lesions. Polk-deficient tumors were controlled by cisplatin treatment and it significantly delayed tumor outgrowth and increased overall survival of tumor bearing mice. Our results indicate that PCNA-ubiquitination and REV1 play distinct roles in DNA damage tolerance. Moreover, our results highlight POLK as a critical TLS polymerase in tolerating multiple genotoxic lesions, including cisplatin lesions. The relative frequent loss of Polk in cancers indicates an exploitable vulnerability for precision cancer medicine.


Assuntos
Reparo do DNA , Neoplasias , Animais , Cisplatino/uso terapêutico , Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , Humanos , Camundongos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Medicina de Precisão , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ubiquitinação
6.
Genes Dev ; 30(12): 1470-80, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27340177

RESUMO

Large-scale sequencing studies are rapidly identifying putative oncogenic mutations in human tumors. However, discrimination between passenger and driver events in tumorigenesis remains challenging and requires in vivo validation studies in reliable animal models of human cancer. In this study, we describe a novel strategy for in vivo validation of candidate tumor suppressors implicated in invasive lobular breast carcinoma (ILC), which is hallmarked by loss of the cell-cell adhesion molecule E-cadherin. We describe an approach to model ILC by intraductal injection of lentiviral vectors encoding Cre recombinase, the CRISPR/Cas9 system, or both in female mice carrying conditional alleles of the Cdh1 gene, encoding for E-cadherin. Using this approach, we were able to target ILC-initiating cells and induce specific gene disruption of Pten by CRISPR/Cas9-mediated somatic gene editing. Whereas intraductal injection of Cas9-encoding lentiviruses induced Cas9-specific immune responses and development of tumors that did not resemble ILC, lentiviral delivery of a Pten targeting single-guide RNA (sgRNA) in mice with mammary gland-specific loss of E-cadherin and expression of Cas9 efficiently induced ILC development. This versatile platform can be used for rapid in vivo testing of putative tumor suppressor genes implicated in ILC, providing new opportunities for modeling invasive lobular breast carcinoma in mice.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/fisiopatologia , Carcinoma Lobular/genética , Carcinoma Lobular/fisiopatologia , Edição de Genes , Glândulas Mamárias Humanas/fisiopatologia , Animais , Sistemas CRISPR-Cas , Caderinas/genética , Modelos Animais de Doenças , Feminino , Inativação Gênica , Genes Supressores de Tumor , Humanos , Camundongos
7.
EMBO J ; 38(21): e102147, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31523835

RESUMO

L-asparaginase (ASNase) serves as an effective drug for adolescent acute lymphoblastic leukemia. However, many clinical trials indicated severe ASNase toxicity in patients with solid tumors, with resistant mechanisms not well understood. Here, we took a functional genetic approach and identified SLC1A3 as a novel contributor to ASNase resistance in cancer cells. In combination with ASNase, SLC1A3 inhibition caused cell cycle arrest or apoptosis, and myriads of metabolic vulnerabilities in tricarboxylic acid (TCA) cycle, urea cycle, nucleotides biosynthesis, energy production, redox homeostasis, and lipid biosynthesis. SLC1A3 is an aspartate and glutamate transporter, mainly expressed in brain tissues, but high expression levels were also observed in some tumor types. Here, we demonstrate that ASNase stimulates aspartate and glutamate consumptions, and their refilling through SLC1A3 promotes cancer cell proliferation. Lastly, in vivo experiments indicated that SLC1A3 expression promoted tumor development and metastasis while negating the suppressive effects of ASNase by fueling aspartate, glutamate, and glutamine metabolisms despite of asparagine shortage. Altogether, our findings identify a novel role for SLC1A3 in ASNase resistance and suggest that restrictive aspartate and glutamate uptake might improve ASNase efficacy with solid tumors.


Assuntos
Asparaginase/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Transportador 1 de Aminoácido Excitatório/metabolismo , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose , Sistemas CRISPR-Cas , Proliferação de Células , Transportador 1 de Aminoácido Excitatório/antagonistas & inibidores , Transportador 1 de Aminoácido Excitatório/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
8.
EMBO J ; 38(4)2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30643021

RESUMO

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Fibrose Cística/patologia , Células Epiteliais/patologia , Técnicas de Cultura de Órgãos/métodos , Organoides/patologia , Infecções por Vírus Respiratório Sincicial/patologia , Sistema Respiratório/patologia , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Células Cultivadas , Fibrose Cística/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Ensaios de Seleção de Medicamentos Antitumorais , Células Epiteliais/metabolismo , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Organoides/metabolismo , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sinciciais Respiratórios/isolamento & purificação , Sistema Respiratório/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Arch Gynecol Obstet ; 307(4): 1163-1176, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36166083

RESUMO

PURPOSE: It is unknown if future fertility is compromised by the administration of chemotherapy during pregnancy. The aim of this study was to identify if chemotherapy affects the maternal ovaries during pregnancy and whether these effects depend on type of chemotherapy and duration of exposure. METHODS: Pregnant 8-week-old female BL6 mice were exposed to 6 different single chemotherapeutic agents (carboplatin, cisplatin, paclitaxel, epirubicin, doxorubicin, or cyclophosphamide) or saline at gestational day (GD) 13.5. The mice were sacrificed at GD 15.5 or GD 18.5. Ovaries were assessed by histopathology and immunohistochemistry. Follicle count was determined per follicle stage and per treatment modality. RESULTS: Maternal ovarian damage was demonstrated by the presence of apoptosis and necrosis in preantral follicles. The extent of this damage depends upon type of chemotherapy and duration of exposure (2 or 5 days). After short exposure, 81% of ovaries showed histopathologic signs of damage compared to 36% after long exposure, which might suggest a transient effect. Loss of primordial follicles (PMFs) was observed after both short and long exposure, with a reduction of more than 70%. Evidence of DNA damage, as demonstrated by phospho-H2AX expression, was present in 23% (range 0-89%) of PMFs exposed to chemotherapy, but only in the short exposure group. Overall, the least damage was seen after administration of paclitaxel. CONCLUSION: Despite physiological ovarian function suppression during gestation, chemotherapy-induced damage of the ovaries occurs in pregnant mouse models, potentially affecting future fertility.


Assuntos
Folículo Ovariano , Ovário , Gravidez , Camundongos , Feminino , Animais , Ciclofosfamida/efeitos adversos , Ciclofosfamida/metabolismo , Cisplatino/efeitos adversos , Paclitaxel/efeitos adversos
11.
Breast Cancer Res ; 24(1): 41, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35715861

RESUMO

BACKGROUND: The majority of BRCA1-mutant breast cancers are characterized by a triple-negative phenotype and a basal-like molecular subtype, associated with aggressive clinical behavior. Current treatment options are limited, highlighting the need for the development of novel targeted therapies for this tumor subtype. METHODS: Our group previously showed that EZH2 is functionally relevant in BRCA1-deficient breast tumors and blocking EZH2 enzymatic activity could be a potent treatment strategy. To validate the role of EZH2 as a therapeutic target and to identify new synergistic drug combinations, we performed a high-throughput drug combination screen in various cell lines derived from BRCA1-deficient and -proficient mouse mammary tumors. RESULTS: We identified the combined inhibition of EZH2 and the proximal DNA damage response kinase ATM as a novel synthetic lethality-based therapy for the treatment of BRCA1-deficient breast tumors. We show that the combined treatment with the EZH2 inhibitor GSK126 and the ATM inhibitor AZD1390 led to reduced colony formation, increased genotoxic stress, and apoptosis-mediated cell death in BRCA1-deficient mammary tumor cells in vitro. These findings were corroborated by in vivo experiments showing that simultaneous inhibition of EZH2 and ATM significantly increased anti-tumor activity in mice bearing BRCA1-deficient mammary tumors. CONCLUSION: Taken together, we identified a synthetic lethal interaction between EZH2 and ATM and propose this synergistic interaction as a novel molecular combination for the treatment of BRCA1-mutant breast cancer.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Proteínas Mutadas de Ataxia Telangiectasia , Proteína BRCA1 , Neoplasias da Mama , Proteína Potenciadora do Homólogo 2 de Zeste , Indóis , Inibidores de Proteínas Quinases , Piridonas , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteína BRCA1/deficiência , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Humanos , Indóis/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Mutações Sintéticas Letais
12.
Nat Methods ; 15(2): 134-140, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29256493

RESUMO

Poly(ADP-ribose) polymerase inhibition (PARPi) is a promising new therapeutic approach for the treatment of cancers that show homologous recombination deficiency (HRD). Despite the success of PARPi in targeting HRD in tumors that lack the tumor suppressor function of BRCA1 or BRCA2, drug resistance poses a major obstacle. We developed three-dimensional cancer organoids derived from genetically engineered mouse models (GEMMs) for BRCA1- and BRCA2-deficient cancers. Unlike conventional cell lines or mammospheres, organoid cultures can be efficiently derived and rapidly expanded in vitro. Orthotopically transplanted organoids give rise to mammary tumors that recapitulate the epithelial morphology and preserve the drug response of the original tumor. Notably, GEMM-tumor-derived organoids can be easily genetically modified, making them a powerful tool for genetic studies of tumor biology and drug resistance.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Neoplasias Mamárias Animais/patologia , Organoides/patologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/fisiologia , Animais , Proteína BRCA1 , Proteína BRCA2/deficiência , Feminino , Neoplasias Mamárias Animais/tratamento farmacológico , Neoplasias Mamárias Animais/metabolismo , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Organoides/efeitos dos fármacos , Organoides/metabolismo , Proteínas Supressoras de Tumor/deficiência
13.
J Pathol ; 246(1): 41-53, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29877575

RESUMO

Hereditary breast cancers in BRCA1 mutation carriers are mostly estrogen receptor α (ERα)-negative and progesterone receptor (PR)-negative; however, hormone depletion via bilateral oophorectomy does result in a marked reduction in breast cancer risk, suggesting that BRCA1-associated breast tumorigenesis is dependent on hormone signaling. We used geneticaly engineered mouse models to determine the individual influences of ERα and PR signaling on the development of BRCA1-deficient breast cancer. In line with the human data, BRCA1-deficient mouse mammary tumors are ERα-negative, and bilateral ovariectomy leads to abrogation of mammary tumor development. Hormonal replacement experiments in ovariectomized mice showed that BRCA1-deficient mammary tumor formation is promoted by estrogen but not by progesterone. In line with these data, mammary tumorigenesis was significantly delayed by the selective ERα downregulator fulvestrant, but not by the selective PR antagonist Org33628. Together, our results illustrate that BRCA1-associated tumorigenesis is dependent on estrogen signaling rather than on progesterone signaling, and call into question the utility of PR antagonists as a tumor prevention strategy for BRCA1 mutation carriers. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma in Situ/induzido quimicamente , Transformação Celular Neoplásica/induzido quimicamente , Estradiol/toxicidade , Terapia de Reposição de Estrogênios/efeitos adversos , Neoplasias Mamárias Experimentais/induzido quimicamente , Progesterona/toxicidade , Transdução de Sinais/efeitos dos fármacos , Proteínas Supressoras de Tumor/genética , Animais , Proteína BRCA1 , Carcinoma in Situ/genética , Carcinoma in Situ/metabolismo , Carcinoma in Situ/patologia , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Implantes de Medicamento , Estradiol/administração & dosagem , Estrenos/farmacologia , Antagonistas do Receptor de Estrogênio/farmacologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor alfa de Estrogênio/metabolismo , Receptor beta de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/metabolismo , Feminino , Fulvestranto/farmacologia , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos da Linhagem 129 , Camundongos Transgênicos , Ovariectomia , Progesterona/administração & dosagem , Receptores de Progesterona/efeitos dos fármacos , Receptores de Progesterona/metabolismo , Fatores de Tempo , Carga Tumoral/efeitos dos fármacos , Proteínas Supressoras de Tumor/deficiência
14.
J Pathol ; 241(4): 511-521, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27943283

RESUMO

Women with heterozygous germline mutations in the BRCA1 tumour suppressor gene are strongly predisposed to developing early-onset breast cancer through loss of the remaining wild-type BRCA1 allele and inactivation of TP53. Although tumour prevention strategies in BRCA1-mutation carriers are still limited to prophylactic surgery, several therapeutic strategies have been developed to target the DNA repair defects (also known as 'BRCAness') of BRCA1-deficient tumours. In particular, DNA-damaging agents such as platinum drugs and poly(ADP-ribose) polymerase (PARP) inhibitors show strong activity against BRCA1-mutated tumours. However, it is unclear whether drugs that target BRCAness can also be used to prevent tumour formation in BRCA1-mutation carriers, especially as loss of wild-type BRCA1 may not be the first event in BRCA1-associated tumourigenesis. We performed prophylactic treatments in a genetically engineered mouse model in which de novo development of BRCA1-deficient mammary tumours is induced by stochastic loss of BRCA1 and p53. We found that prophylactic window therapy with nimustine, cisplatin or olaparib reduced the amount and size of mammary gland lesions, and significantly increased the median tumour latency. Similar results were obtained with intermittent prophylactic treatment with olaparib. Importantly, prophylactic window therapy with nimustine and cisplatin resulted in an increased fraction of BRCA1-proficient mammary tumours, suggesting selective survival and malignant transformation of BRCA1-proficient lesions upon prophylactic treatment with DNA-damaging agents. Prophylactic therapy with olaparib significantly prolonged mammary tumour-free survival without any significant increase in the fraction of BRCA1-proficient tumours, warranting the evaluation of this PARP inhibitor in prophylactic trials in BRCA1-mutation carriers. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Mamárias Animais/tratamento farmacológico , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Supressoras de Tumor/genética , Animais , Antineoplásicos/uso terapêutico , Proteína BRCA1 , Cisplatino/farmacologia , Reparo do DNA , Modelos Animais de Doenças , Feminino , Mutação em Linhagem Germinativa , Humanos , Neoplasias Mamárias Animais/patologia , Neoplasias Mamárias Animais/prevenção & controle , Camundongos , Nimustina/farmacologia , Ftalazinas/uso terapêutico , Piperazinas/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
15.
J Pathol ; 226(1): 28-39, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21915857

RESUMO

Fanconi anaemia (FA) is a rare recessive disorder marked by developmental abnormalities, bone marrow failure, and a high risk for the development of leukaemia and solid tumours. The inactivation of FA genes, in particular FANCF, has also been documented in sporadic tumours in non-FA patients. To study whether there is a causal relationship between FA pathway defects and tumour development, we have generated a mouse model with a targeted disruption of the FA core complex gene Fancf. Fancf-deficient mouse embryonic fibroblasts displayed a phenotype typical for FA cells: they showed an aberrant response to DNA cross-linking agents as manifested by G(2) arrest, chromosomal aberrations, reduced survival, and an inability to monoubiquitinate FANCD2. Fancf homozygous mice were viable, born following a normal Mendelian distribution, and showed no growth retardation or developmental abnormalities. The gonads of Fancf mutant mice functioned abnormally, showing compromised follicle development and spermatogenesis as has been observed in other FA mouse models and in FA patients. In a cohort of Fancf-deficient mice, we observed decreased overall survival and increased tumour incidence. Notably, in seven female mice, six ovarian tumours developed: five granulosa cell tumours and one luteoma. One mouse had developed tumours in both ovaries. High-resolution array comparative genomic hybridization (aCGH) on these tumours suggests that the increased incidence of ovarian tumours correlates with the infertility in Fancf-deficient mice and the genomic instability characteristic of FA pathway deficiency.


Assuntos
Proteína do Grupo de Complementação F da Anemia de Fanconi/genética , Tumor de Células da Granulosa/genética , Luteoma/genética , Neoplasias Ovarianas/genética , Animais , Hibridização Genômica Comparativa , Modelos Animais de Doenças , Proteína do Grupo de Complementação F da Anemia de Fanconi/deficiência , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
16.
Cell Rep ; 42(4): 112324, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37000626

RESUMO

Patient-derived organoids (PDOs) are widely heralded as a drug-screening platform to develop new anti-cancer therapies. Here, we use a drug-repurposing library to screen PDOs of colorectal cancer (CRC) to identify hidden vulnerabilities within therapy-induced phenotypes. Using a microscopy-based screen that accurately scores drug-induced cell killing, we have tested 414 putative anti-cancer drugs for their ability to switch the EGFRi/MEKi-induced cytostatic phenotype toward cytotoxicity. A majority of validated hits (9/37) are microtubule-targeting agents that are commonly used in clinical oncology, such as taxanes and vinca-alkaloids. One of these drugs, vinorelbine, is consistently effective across a panel of >25 different CRC PDOs, independent of RAS mutational status. Unlike vinorelbine alone, its combination with EGFR/MEK inhibition induces apoptosis at all stages of the cell cycle and shows tolerability and effective anti-tumor activity in vivo, setting the basis for a clinical trial to treat patients with metastatic RAS-mutant CRC.


Assuntos
Antineoplásicos , Neoplasias do Colo , Neoplasias Colorretais , Humanos , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Vinorelbina/farmacologia , Vinorelbina/uso terapêutico , Reposicionamento de Medicamentos , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Organoides/metabolismo
17.
J Exp Med ; 220(11)2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37642941

RESUMO

Targeting the PI3K-AKT-mTOR pathway is a promising therapeutic strategy for breast cancer treatment. However, low response rates and development of resistance to PI3K-AKT-mTOR inhibitors remain major clinical challenges. Here, we show that MYC activation drives resistance to mTOR inhibitors (mTORi) in breast cancer. Multiomic profiling of mouse invasive lobular carcinoma (ILC) tumors revealed recurrent Myc amplifications in tumors that acquired resistance to the mTORi AZD8055. MYC activation was associated with biological processes linked to mTORi response and counteracted mTORi-induced translation inhibition by promoting translation of ribosomal proteins. In vitro and in vivo induction of MYC conferred mTORi resistance in mouse and human breast cancer models. Conversely, AZD8055-resistant ILC cells depended on MYC, as demonstrated by the synergistic effects of mTORi and MYCi combination treatment. Notably, MYC status was significantly associated with poor response to everolimus therapy in metastatic breast cancer patients. Thus, MYC is a clinically relevant driver of mTORi resistance that may stratify breast cancer patients for mTOR-targeted therapies.


Assuntos
Neoplasias da Mama , Humanos , Animais , Camundongos , Feminino , Neoplasias da Mama/tratamento farmacológico , Inibidores de MTOR , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR
18.
Cell Rep ; 42(5): 112538, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37209095

RESUMO

BRCA1 and BRCA2 both function in DNA double-strand break repair by homologous recombination (HR). Due to their HR defect, BRCA1/2-deficient cancers are sensitive to poly(ADP-ribose) polymerase inhibitors (PARPis), but they eventually acquire resistance. Preclinical studies yielded several PARPi resistance mechanisms that do not involve BRCA1/2 reactivation, but their relevance in the clinic remains elusive. To investigate which BRCA1/2-independent mechanisms drive spontaneous resistance in vivo, we combine molecular profiling with functional analysis of HR of matched PARPi-naive and PARPi-resistant mouse mammary tumors harboring large intragenic deletions that prevent reactivation of BRCA1/2. We observe restoration of HR in 62% of PARPi-resistant BRCA1-deficient tumors but none in the PARPi-resistant BRCA2-deficient tumors. Moreover, we find that 53BP1 loss is the prevalent resistance mechanism in HR-proficient BRCA1-deficient tumors, whereas resistance in BRCA2-deficient tumors is mainly induced by PARG loss. Furthermore, combined multi-omics analysis identifies additional genes and pathways potentially involved in modulating PARPi response.


Assuntos
Neoplasias , Neoplasias Ovarianas , Animais , Camundongos , Feminino , Humanos , Proteína BRCA1/genética , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Multiômica , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias/genética , Neoplasias Ovarianas/genética
19.
PLoS One ; 17(9): e0273182, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36067171

RESUMO

Inducing senescence in cancer cells is emerging as a new therapeutic strategy. In order to find ways to enhance senescence induction by palbociclib, a CDK4/6 inhibitor approved for treatment of metastatic breast cancer, we performed functional genetic screens in palbociclib-resistant cells. Using this approach, we found that loss of CDK2 results in strong senescence induction in palbociclib-treated cells. Treatment with the CDK2 inhibitor indisulam, which phenocopies genetic CDK2 inactivation, led to sustained senescence induction when combined with palbociclib in various cell lines and lung cancer xenografts. Treating cells with indisulam led to downregulation of cyclin H, which prevented CDK2 activation. Combined treatment with palbociclib and indisulam induced a senescence program and sensitized cells to senolytic therapy. Our data indicate that inhibition of CDK2 through indisulam treatment can enhance senescence induction by CDK4/6 inhibition.


Assuntos
Quinase 6 Dependente de Ciclina , Inibidores de Proteínas Quinases , Linhagem Celular Tumoral , Quinase 2 Dependente de Ciclina , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/metabolismo , Humanos , Piperazinas , Inibidores de Proteínas Quinases/farmacologia , Piridinas , Sulfonamidas
20.
Cancer Res Commun ; 2(10): 1266-1281, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36467895

RESUMO

In recent years platinum (Pt) drugs have been found to be especially efficient to treat patients with cancers that lack a proper DNA damage response, e.g. due to dysfunctional BRCA1. Despite this knowledge, we are still missing helpful markers to predict Pt response in the clinic. We have previously shown that volume-regulated anion channels, containing the subunits LRRC8A and LRRC8D, promote the uptake of cisplatin and carboplatin in BRCA1-proficient cell lines. Here, we show that the loss of LRRC8A or LRRC8D significantly reduces the uptake of cis- and carboplatin in BRCA1;p53-deficient mouse mammary tumor cells. This results in reduced DNA damage and in vivo drug resistance. In contrast to Lrrc8a, the deletion of the Lrrc8d gene does not affect the viability and fertility of mice. Interestingly, Lrrc8d-/- mice tolerate a two-fold cisplatin maximum-tolerable dose. This allowed us to establish a mouse model for intensified Pt-based chemotherapy, and we found that an increased cisplatin dose eradicates BRCA1;p53-deficient tumors, whereas eradication is not possible in WT mice. Moreover, we show that decreased expression of LRRC8A/D in head and neck squamous cell carcinoma patients, who are treated with a Pt-based chemoradiotherapy, leads to decreased overall survival of the patients. In particular, high cumulative cisplatin dose treatments lost their efficacy in patients with a low LRRC8A/D expression in their cancers. Our data therefore suggest that LRRC8A and LRRC8D should be included in a prospective trial to predict the success of intensified cis- or car-boplatin-based chemotherapy.


Assuntos
Cisplatino , Platina , Camundongos , Animais , Cisplatino/farmacologia , Carboplatina/farmacologia , Platina/metabolismo , Proteína Supressora de Tumor p53/genética , Estudos Prospectivos , Proteínas de Membrana/genética , Ânions/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA