Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Environ Sci Technol ; 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38343161

RESUMO

The nematode Caenorhabditis elegans is a valuable model for ecotoxicological research, yet limited attention has been given to understanding how it absorbs, distributes, metabolizes, and excretes chemicals. This is crucial for C. elegans because the organism is known to have strong uptake barriers that are known to be susceptible to potential confounding effects of the presence of Escherichia coli as a food source. One frequently studied compound in C. elegans is the antidepressant fluoxetine, which has an active metabolite norfluoxetine. In this study, we evaluated the toxicokinetics and relative potency of norfluoxetine and fluoxetine in chemotaxis and activity tests. Toxicokinetics experiments were conducted with varying times, concentrations of fluoxetine, and in the absence or presence of E. coli, simulated with a one-compartment model. Our findings demonstrate that C. elegans can take up fluoxetine and convert it into norfluoxetine. Norfluoxetine proved slightly more potent and had a longer elimination half-life. The bioconcentration factor, uptake, and elimination rate constants depended on exposure levels, duration, and the presence of E. coli in the exposure medium. These findings expand our understanding of toxicokinetic modeling in C. elegans for different exposure scenarios, underlining the importance of considering norfluoxetine formation in exposure and bioactivity assessments of fluoxetine.

2.
Environ Sci Technol ; 57(13): 5337-5348, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36940419

RESUMO

Historical mining activities in Svalbard (79°N/12°E) have caused local mercury (Hg) contamination. To address the potential immunomodulatory effects of environmental Hg on Arctic organisms, we collected newborn barnacle goslings (Branta leucopsis) and herded them in either a control or mining site, differing in Hg levels. An additional group at the mining site was exposed to extra inorganic Hg(II) via supplementary feed. Hepatic total Hg concentrations differed significantly between the control (0.011 ± 0.002 mg/kg dw), mine (0.043 ± 0.011 mg/kg dw), and supplementary feed (0.713 ± 0.137 mg/kg dw) gosling groups (average ± standard deviation). Upon immune challenge with double-stranded RNA (dsRNA) injection, endpoints for immune responses and oxidative stress were measured after 24 h. Our results indicated that Hg exposure modulated the immune responses in Arctic barnacle goslings upon a viral-like immune challenge. Increased exposure to both environmental as well as supplemental Hg reduced the level of natural antibodies, suggesting impaired humoral immunity. Hg exposure upregulated the expression of proinflammatory genes in the spleen, including inducible nitric oxide synthase (iNOS) and interleukin 18 (IL18), suggesting Hg-induced inflammatory effects. Exposure to Hg also oxidized glutathione (GSH) to glutathione disulfide (GSSG); however, goslings were capable of maintaining the redox balance by de novo synthesis of GSH. These adverse effects on the immune responses indicated that even exposure to low, environmentally relevant levels of Hg might affect immune competence at the individual level and might even increase the susceptibility of the population to infections.


Assuntos
Mercúrio , Thoracica , Animais , Gansos/metabolismo , Thoracica/metabolismo , Svalbard , Regiões Árticas , Imunidade
3.
Ecotoxicol Environ Saf ; 250: 114493, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608562

RESUMO

Antidepressant prescriptions are on a rise worldwide and this increases the concerns for the impacts of these pharmaceuticals on nontarget organisms. Antidepressants are neuroactive compounds that can affect organism's behavior. Behavior is a sensitive endpoint that may also propagate effects at a population level. Another interesting aspect of antidepressants is that they have shown to induce non-monotonic dose-response (NMDR) curves. While such NMDR relationships may have clear implications for the environmental risk, the resolution of current studies is often too coarse to be able to detect relevant NMDR. Therefore, the current study was performed into the behavioral effects (activity, feeding and chemotaxis) in Caenorhabditis elegans as the model organism of the selective serotonin reuptake inhibitors fluoxetine and sertraline and the acetylcholinesterase inhibiting pesticide chlorpyrifos, using a wide range of concentrations (ng/l to mg/l). In order to statistically examine the non-monotonicity, nonlinear regression models were applied to the results. The results showed a triphasic dose-response relationship for activity and chemotaxis after exposure to fluoxetine, but not to sertraline or chlorpyrifos. Effects of fluoxetine already occurred at low concentrations in the range of ng/l while sertraline only showed effects at concentrations in the µg/l range, similar to chlorpyrifos. The different responses between fluoxetine and sertraline, both SSRIs, indicate that response patterns may not always be extrapolated from chemicals with the same primary mode of action. The effects of fluoxetine at low concentrations, in a non-monotonic manner, confirm the relevance of examining such responses at low concentrations.


Assuntos
Clorpirifos , Fluoxetina , Animais , Fluoxetina/toxicidade , Sertralina/toxicidade , Caenorhabditis elegans , Acetilcolinesterase , Antidepressivos/toxicidade , Inibidores Seletivos de Recaptação de Serotonina/toxicidade
4.
Ecotoxicol Environ Saf ; 242: 113917, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35908530

RESUMO

Field collected aquatic invertebrates are often used as test organisms in the refinement of the standard Tier 1 risk assessment of various pollutants. This approach can provide insights into the effects of pollutants on the natural environment. However, researchers often pragmatically select test organisms of a specific sex and/or size, which may not represent the sensitivity of the whole population. To investigate such intraspecies sensitivity differences, we performed standard acute toxicity and toxicokinetic tests with different size classes and sex of Gammarus pulex and Asellus aquaticus. Furthermore, toxicokinetics and toxicodynamics models were used to understand the mechanism of the intraspecies sensitivity differences. We used neonates, juveniles and male and female adults in separate dedicated experiments, in which we exposed the animals to imidacloprid and its bioactive metabolite, imidacloprid-olefin. For both species, we found that neonates were the most sensitive group. For G. pulex, the sensitivity decreased linearly with size, which can be explained by the size-related uptake rate constant in the toxicokinetic process and size-related threshold value in the toxicodynamic process. For A. aquaticus, female adults were least sensitive to imidacloprid, which could be explained by a low internal biotransformation of imidacloprid to imidacloprid-olefin. Besides, imidacloprid-olefin was more toxic than imidacloprid to A. aquaticus, with differences being 8.4 times for females and 2.7 times for males. In conclusion, we established size-related sensitivity differences for G. pulex and sex-related sensitivity for A. aquaticus, and intraspecies differences can be explained by both toxicokinetic and toxicodynamic processes. Our findings suggest that to protect populations in the field, we should consider the size and sex of focal organisms and that a pragmatic selection of test organisms of equal size and/or sex can underestimate the sensitivities of populations in the field.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Alcenos , Animais , Feminino , Masculino , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Poluentes Químicos da Água/toxicidade
5.
Ecotoxicol Environ Saf ; 220: 112371, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34052759

RESUMO

Uptake of most metal nanoparticles (NPs) in organisms is assumed to be mainly driven by the bioavailability of the released ions, as has been verified in controlled and short-term exposure tests. However, the changeability of NPs and the dynamic processes which NPs undergo in the soil environment, bring uncertainty regarding their interactions with soil organisms over a long period of time. To assess the potential impacts of long-term exposure scenarios on the toxicokinetic of metal NPs, earthworms Eisenia fetida were exposed to soils spiked with pristine Ag-NP, aged Ag-NP (Ag2S-NP) and ionic Ag for nine months, and results were compared to those from a similar short-term (28 days) experiment, conducted under similar conditions. Overall, there were no statistical differences between long-term accumulation patterns in earthworms exposed to pristine Ag-NP and AgNO3, while for Ag2S-NP, the amount of Ag internalized after 9 months was five times lower than for the other treatments. Average Ag concentrations in soil pore water in all treatments did not change over time, however the soil pH decreased and electrical conductivity increased in all treatments. Metallothionein concentrations in exposed earthworms were not statistically different from levels in untreated earthworms. Finally, the short-term toxicokinetic models predicted the bioaccumulation in earthworms exposed to Ag-NP, AgNO3 after nine months on the whole. Although the bioaccumulation for Ag2S-NPs was somewhat under-predicted, the rate of accumulation of Ag2S-NPs is much lower than that of Ag-NPs or AgNO3 and thus potentially of lower concern. Nevertheless, better understanding about the exposure kinetics of Ag2S-NP would help to address potential nano-specific toxicokinetic and toxicodynamics, also of other sulfidized metal NPs.


Assuntos
Íons/metabolismo , Nanopartículas Metálicas , Oligoquetos/metabolismo , Prata/metabolismo , Poluentes do Solo/metabolismo , Solo/química , Animais , Bioacumulação , Disponibilidade Biológica , Transporte Biológico , Metalotioneína , Compostos de Prata/metabolismo , Toxicocinética , Água
6.
Environ Sci Technol ; 54(7): 4026-4035, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32129610

RESUMO

The occurrence of persistent organic pollutants (POPs) in the Arctic has been of constant concern, as these chemicals cause reproductive effects and mortality in organisms. The Arctic acts as a chemical sink, which makes this system an interesting case for bioaccumulation studies. However, as conducting empirical studies for all Arctic species and POPs individually is unfeasible, in silico methods have been developed. Existing bioaccumulation models are predominately validated for temperate food chains, and do not account for a large variation in trophic levels. This study applies Monte Carlo simulations to account for variability in trophic ecology on Svalbard when predicting bioaccumulation of POPs using the optimal modeling for ecotoxicological applications (OMEGA) bioaccumulation model. Trophic magnification factors (TMFs) were calculated accordingly. Comparing our model results with monitored POP residues in biota revealed that, on average, all predictions fell within a factor 6 of the monitored POP residues in biota. Trophic variability did not affect model performance tremendously, with up to a 25% variability in performance metrics. To our knowledge, we were the first to include trophic variability in predicting biomagnification in Arctic ecosystems using a mechanistic biomagnification model. However, considerable amounts of data are required to quantify the implications of trophic variability on biomagnification of POPs in Arctic food webs.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Animais , Regiões Árticas , Bioacumulação , Ecossistema , Monitoramento Ambiental , Peixes , Cadeia Alimentar , Svalbard
7.
Environ Sci Technol ; 54(5): 2763-2771, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950826

RESUMO

Pollutant levels in polar regions are gaining progressively more attention from the scientific community. This is especially so for pollutants that persist in the environment and can reach polar latitudes via a wide range of routes, such as some persistent organic pollutants (POPs). In this study, samples of Antarctic marine benthic organisms were analyzed for legacy and emerging POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides) to comprehensively assess their current POP concentrations and infer the potential sources of the pollutants. Specimens of five benthic invertebrate species were collected at two distinct locations near Rothera research station on the Antarctic Peninsula (67°35'8 ̋ S and 68°7'59 ̋ W). Any impact of the nearby Rothera station as a local source of pollution appeared to be negligible. The most abundant chemicals detected were hexachlorobenzene (HCB) and BDE-209. The highest concentrations detected were in limpets and sea urchins, followed by sea stars, ascidians, and sea cucumbers. The relative congener patterns of PCBs and PBDEs were similar in all of the species. Some chemicals (e.g., heptachlor, oxychlordane, and mirex) were detected in the Antarctic invertebrates for the first time. Statistical analyses revealed that the distribution of the POPs was not only driven by the feeding traits of the species but also by the physicochemical properties of the specific compounds.


Assuntos
Poluentes Ambientais , Hidrocarbonetos Clorados , Bifenilos Policlorados , Poluentes Químicos da Água , Animais , Regiões Antárticas , Monitoramento Ambiental , Éteres Difenil Halogenados , Invertebrados
8.
J Appl Toxicol ; 39(7): 992-1001, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30828855

RESUMO

Toxic trace metals are widespread contaminants that are potentially immunotoxic even at environmentally low exposure levels. They can modulate the immunity to infections, e.g., in wildlife species living in contaminated areas. The diverse immune cell types can be differentially affected by the exposure leading to the modulation of specific protective mechanisms. Macrophages and mast cells, part of the innate immune system, trigger immune responses and perform particular effector functions. The present study compared toxicological and functional effects of cadmium in two models of murine macrophages (RAW264.7 and NR8383 cell lines) and two models of murine mast cells (MC/9 and RBL-2H3 cell lines). Cadmium was selected as a model compound because its known potential to induce reactive oxygen species and its relevance as an environmental contaminant. Mechanisms of toxicity, such as redox imbalance and apoptosis induction were measured in stationary cells, while functional outcome effects were measured in activated cells. Cadmium-depleted glutathione antioxidant in all four cell lines tested although reactive oxygen species was not significantly increased. Mast cells had full dose-response depletion of glutathione below cytotoxic levels while in macrophages the depletion was not complete. Functional endpoints tumour necrosis factor-alpha and nitrite production in lipopolysaccharide-activated macrophages were increased by cadmium exposure. In contrast, mast cell lipopolysaccharide-induced tumour necrosis factor-alpha and IgE-mediated histamine release were reduced by cadmium. These data indicate potentially differential effects of cadmium among murine innate immune cell types, where mast cells would be more susceptible to oxidative stress and their function might be at a higher risk to be modulated compared to macrophages.


Assuntos
Cádmio/toxicidade , Poluentes Ambientais/toxicidade , Imunidade Inata/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Glutationa/metabolismo , Lipopolissacarídeos/farmacologia , Ativação de Macrófagos/efeitos dos fármacos , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Mastócitos/imunologia , Camundongos , Células RAW 264.7 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Proc Biol Sci ; 285(1893): 20181866, 2018 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-30963902

RESUMO

Natural populations are persistently exposed to environmental pollution, which may adversely impact animal physiology and behaviour and even compromise survival. Responding appropriately to any stressor ultimately might tip the scales for survival, as mistimed behaviour and inadequate physiological responses may be detrimental. Yet effects of legacy contamination on immediate physiological and behavioural stress coping abilities during acute stress are virtually unknown. Here, we assessed these effects in barnacle goslings ( Branta leucopsis) at a historical coal mine site in the Arctic. For three weeks we led human-imprinted goslings, collected from nests in unpolluted areas, to feed in an abandoned coal mining area, where they were exposed to trace metals. As control we led their siblings to feed on clean grounds. After submitting both groups to three well-established stress tests (group isolation, individual isolation, on-back restraint), control goslings behaved calmer and excreted lower levels of corticosterone metabolites. Thus, legacy contamination may decisively change stress physiology and behaviour in long-lived vertebrates exposed at a young age.


Assuntos
Poluentes Ambientais/metabolismo , Gansos/fisiologia , Hidrocortisona/metabolismo , Comportamento Social , Estresse Fisiológico , Animais , Animais Selvagens , Carvão Mineral , Feminino , Masculino , Mineração , Svalbard
10.
Crit Rev Toxicol ; 48(8): 666-681, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30257127

RESUMO

This review provides an overview of results obtained when using proteome analysis for detecting sex-based differences in response to toxicants. It reveals implications to be taken into account when considering the use of proteomics in toxicological studies. It appears that results may differ when studying the same chemical in the same species in different target tissues. Another result of interest is the limited dose-response behavior of differential abundance patterns observed in studies where more than one dose level is tested. It is concluded that use of proteomics to study differences in modes of action of toxic compounds is an active area of research. The examples from use of proteomics to study sex-dependent differences also reveal that further studies are needed to provide reliable insight in modes of action, novel biomarkers or even novel therapies. To eventually reach this aim for this and other toxicological endpoints, it is essential to consider background variability, consequences of timing of toxicant administration, dose-response behavior, relevant species and target organ, species and organ variability and the presence of proteoforms.


Assuntos
Proteômica , Toxicologia , Animais , Biomarcadores , Substâncias Perigosas/toxicidade , Humanos , Proteômica/métodos , Caracteres Sexuais , Toxicologia/métodos
12.
Environ Sci Technol ; 48(15): 8433-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24968307

RESUMO

Despite a long history of successful use, routine application of some anticoagulant rodenticides (ARs) may be at a crossroad due to new regulatory guidelines intended to mitigate risk. An adverse outcome pathway for ARs was developed to identify information gaps and end points to assess the effectiveness of regulations. This framework describes chemical properties of ARs, established macromolecular interactions by inhibition of vitamin K epoxide reductase, cellular responses including altered clotting factor processing and coagulopathy, organ level effects such as hemorrhage, organism responses with linkages to reduced fitness and mortality, and potential consequences to predator populations. Risk assessments have led to restrictions affecting use of some second-generation ARs (SGARs) in North America. While the European regulatory community highlighted significant or unacceptable risk of ARs to nontarget wildlife, use of SGARs in most EU member states remains authorized due to public health concerns and the absence of safe alternatives. For purposes of conservation and restoration of island habitats, SGARs remain a mainstay for eradication of invasive species. There are significant data gaps related to exposure pathways, comparative species sensitivity, consequences of sublethal effects, potential hazards of greater AR residues in genetically resistant prey, effects of low-level exposure to multiple rodenticides, and quantitative data on the magnitude of nontarget wildlife mortality.


Assuntos
Anticoagulantes/toxicidade , Rodenticidas/toxicidade , Animais , Europa (Continente) , Cadeia Alimentar , América do Norte , Medição de Risco
13.
Chemosphere ; 361: 142511, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38825249

RESUMO

Environmental ambient temperature significantly impacts the metabolic activities of aquatic ectotherm organisms and influences the fate of various chemicals. Although numerous studies have shown that the acute lethal toxicity of most chemicals increases with increasing temperature, the impact of temperature on chronic effects - encompassing both lethal and sublethal endpoints - has received limited attention. Furthermore, the mechanisms linking temperature and toxicity, potentially unveiled by toxicokinetic-toxicodynamic models (TKTD), remains inadequately explored. This study investigated the effects of environmentally relevant concentrations of the insecticide imidacloprid (IMI) on the growth and survival of the freshwater amphipod Gammarus pulex at two different temperatures. Our experimental design was tailored to fit a TKTD model, specifically the Dynamic Energy Budget (DEB) model. We conducted experiments spanning three and six months, utilizing small G. pulex juveniles. We observed effects endpoints at least five times, employing both destructive and non-destructive methods, crucial for accurate model fittings. Our findings reveal that IMI at environmental concentrations (up to 0.3 µg/L) affects the growth and survival of G. pulex, albeit with limited effects, showing a 10% inhibition compared to the control group. These limited effects, observed in both lethal and sublethal aspects, suggest a different mode of action at low, environmentally-relevant concentrations in long-term exposure (3 months), in contrast to previous studies which applied higher concentrations and found that sublethal effects occurred at significantly lower levels than lethal effects in an acute test setting (4 days). Moreover, after parameterizing the DEB model for various temperatures, we identified a lower threshold for both lethal and sublethal effects at higher temperatures, indicating increased intrinsic sensitivity. Overall, this study contributes to future risk assessments considering temperature as a crucial factor and exemplifies the integration of the DEB model into experimental design for comprehensive toxicity evaluations.


Assuntos
Anfípodes , Inseticidas , Neonicotinoides , Nitrocompostos , Temperatura , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Anfípodes/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Inseticidas/toxicidade , Toxicocinética , Imidazóis/toxicidade
14.
Chemosphere ; 363: 142819, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38986776

RESUMO

The environmental presence of pharmaceuticals, including the antidepressant fluoxetine, has become a subject of concern. Numerous studies have revealed effects of fluoxetine at environmental concentrations. Some of these studies have reported non-monotonic dose-response curves (NMDRs), leading to discussion because of the inconsistent detection of subtle effects and lack of mechanistic understanding. Nevertheless, investigating NMDRs in risk assessment is important, because neglecting them could underestimate potential risks of chemicals at low levels of exposure. Identification and quantification of NMDRs in risk assessment remains challenging, particularly given the prevalence of single outliers and the lack of sound statistical analyses. In response, the European Food Safety Authority (Beausoleil et al., 2016) presented a framework delineating six checkpoints for the evaluation of NMDR datasets, offering a systematic method for their assessment. The present study applies this framework to the case study of fluoxetine, aiming to assess the weight-of-evidence for the reported NMDR relationships. Through a systematic literature search, 53 datasets were selected for analysis against the six checkpoints. The results reveal that while a minority of these datasets meet all checkpoints, a significant proportion (27%) fulfilled at least five. Notably, many studies did not meet checkpoint 3, which requires NMDRs to be based on more than a single outlier. Overall, the current study points out a number of studies with considerable evidence supporting the presence of NMDRs for fluoxetine, while the majority of studies lacks strong evidence. The suggested framework proved useful for analysing NMDRs in ecotoxicological studies, but it is still imperative to develop further understanding of their biological plausibility.

15.
Integr Environ Assess Manag ; 20(3): 645-657, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38411383

RESUMO

Many jurisdictions require ecological risk assessments for terrestrial wildlife (i.e., terrestrial vertebrates) to assess potential adverse effects from exposure to anthropogenic chemicals. This occurs, for example, at contaminated sites and when new pesticides are proposed, and it occurs for chemicals that are in production and/or proposed for wide-scale use. However, guidance to evaluate such risks has not changed markedly in decades, despite the availability of new scientific tools to do so. In 2019, the Wildlife Toxicology World Interest Group of the Society of Environmental Toxicology and Chemistry (SETAC) initiated a virtual workshop that included a special session coincident with the annual SETAC North America meeting and which focused on the prospect of improving risk assessments for wildlife and improving their use in implementing chemical regulations. Work groups continued the work and investigated the utility of integrating emerging science and novel methods for improving problem formulation (WG1), exposure (WG2), toxicology (WG3), and risk characterization (WG4). Here we provide a summary of that workshop and the follow-up work, the regulations that drive risk assessment, and the key focus areas identified to advance the ability to predict risks of chemicals to wildlife. Integr Environ Assess Manag 2024;20:645-657. © 2024 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Animais Selvagens , Praguicidas , Animais , Ecotoxicologia , Medição de Risco/métodos , Praguicidas/toxicidade , América do Norte
16.
Integr Environ Assess Manag ; 20(3): 674-698, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-36688277

RESUMO

The exposure assessment component of a Wildlife Ecological Risk Assessment aims to estimate the magnitude, frequency, and duration of exposure to a chemical or environmental contaminant, along with characteristics of the exposed population. This can be challenging in wildlife as there is often high uncertainty and error caused by broad-based, interspecific extrapolation and assumptions often because of a lack of data. Both the US Environmental Protection Agency (USEPA) and European Food Safety Authority (EFSA) have broadly directed exposure assessments to include estimates of the quantity (dose or concentration), frequency, and duration of exposure to a contaminant of interest while considering "all relevant factors." This ambiguity in the inclusion or exclusion of specific factors (e.g., individual and species-specific biology, diet, or proportion time in treated or contaminated area) can significantly influence the overall risk characterization. In this review, we identify four discrete categories of complexity that should be considered in an exposure assessment-chemical, environmental, organismal, and ecological. These may require more data, but a degree of inclusion at all stages of the risk assessment is critical to moving beyond screening-level methods that have a high degree of uncertainty and suffer from conservatism and a lack of realism. We demonstrate that there are many existing and emerging scientific tools and cross-cutting solutions for tackling exposure complexity. To foster greater application of these methods in wildlife exposure assessments, we present a new framework for risk assessors to construct an "exposure matrix." Using three case studies, we illustrate how the matrix can better inform, integrate, and more transparently communicate the important elements of complexity and realism in exposure assessments for wildlife. Modernizing wildlife exposure assessments is long overdue and will require improved collaboration, data sharing, application of standardized exposure scenarios, better communication of assumptions and uncertainty, and postregulatory tracking. Integr Environ Assess Manag 2024;20:674-698. © 2023 SETAC.

17.
Environ Pollut ; 337: 122100, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37392867

RESUMO

Cadmium (Cd) and lead (Pb) are known to enhance immune cell damages and to decrease cellular immunity, promoting higher susceptibility to infectious diseases. Selenium (Se) is an essential element involved in immunity and reactive oxygen species scavenging. This study aimed at evaluating how Cd and Pb and low nutritional (Se) quality modulate immune response to a bacterial lipopolysaccharide (LPS) challenge in wood mice (Apodemus sylvaticus). Mice were trapped near a former smelter in northern France in sites of High or Low contamination. Individuals were challenged immediately after capture or after five days of captivity, fed a standard or a Se-deficient diet. Immune response was measured with leukocyte count and plasma concentration of TNF-α, a pro-inflammatory cytokine. Faecal and plasma corticosterone (CORT), a stress-hormone involved in anti-inflammatory processes, was measured to assess potential endocrine mechanisms. Higher hepatic Se and lower faecal CORT were measured in free-ranging wood mice from High site. LPS-challenged individuals from High site showed steeper decrease of circulating leukocytes of all types, higher TNF-α concentrations, and a significant increase of CORT, compared to individuals from Low site. Challenged captive animals fed standard food exhibited similar patterns (decrease of leukocytes, increase of CORT, and detectable levels of TNF-α), with individuals from lowly contaminated site having higher immune responses than their counterparts from highly polluted site. Animals fed Se-deficient food exhibited lymphocytes decrease, no CORT variation, and average levels of TNF-α. These results suggest (i) a higher inflammatory response to immune challenge in free-ranging animals highly exposed to Cd and Pb, (ii) a faster recovery of inflammatory response in animals lowly exposed to pollution when fed standard food than more exposed individuals, and (iii) a functional role of Se in the inflammatory response. The role of Se and mechanisms underlying the relationship between glucocorticoid and cytokine remain to be elucidated.


Assuntos
Cádmio , Selênio , Camundongos , Animais , Cádmio/análise , Fator de Necrose Tumoral alfa , Lipopolissacarídeos/toxicidade , Chumbo , Murinae , Poluição Ambiental/análise , Corticosterona , Valor Nutritivo , Imunidade
18.
Aquat Toxicol ; 254: 106370, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36516501

RESUMO

Pharmaceuticals are increasingly released into surface waters and therefore ubiquitous in aquatic systems. While pharmaceuticals are known to influence species interactions, their effect on host-parasite interactions is still underexplored despite potential ecosystem-level consequences. Here, we ask whether diclofenac, a widely used non-steroid anti-inflammatory drug, affects the interaction between a phytoplankton host (Staurastrum sp.; green alga) and its obligate fungal parasite (Staurastromyces oculus; chytrid fungus). We hypothesized that the effect of increasing diclofenac concentration on the host-parasite system depends on parasite exposure. We assessed acute and chronic effects of a wide range of diclofenac concentrations (0-150 mg/L) on host and parasite performance using a replicated long gradient design in batch cultures. Overall system response summarizing parameters related to all biotic components in an experimental unit i.e., number of bacteria and phytoplankton host cells along with photosynthetic yield (a measure of algal cell fitness), depended on diclofenac concentration and presence/absence of parasite. While host standing biomass decreased at diclofenac concentrations >10 mg/L in non-parasite-exposed treatments, it increased at ≥10 mg/L in parasite-exposed treatments since losses due to infection declined. During acute phase (0-48 h), diclofenac concentrations <0.1 mg/L had no effect on host net-production neither in parasite-exposed nor non-parasite-exposed treatments, but parasite infection ceased at 10 mg/L. During chronic phase (0-216 h), host net-production declined only at concentrations >10 mg/L in non-parasite-exposed cultures, while it was overall close to zero in parasite-exposed cultures. Our results suggest that chytrid parasites are more sensitive to diclofenac than their host, allowing a window of opportunity for growth of phytoplankton hosts, despite exposure to a parasite. Our work provides a first understanding about effects of a pharmaceutical on a host-parasite interaction beyond those defined by standard toxicological metrics.


Assuntos
Parasitos , Poluentes Químicos da Água , Animais , Interações Hospedeiro-Parasita , Plâncton , Diclofenaco/toxicidade , Ecossistema , Poluentes Químicos da Água/toxicidade , Fitoplâncton , Preparações Farmacêuticas
19.
Sci Total Environ ; 873: 162160, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36775152

RESUMO

Mesocosms allow the simulation of environmentally relevant conditions and can be used to establish more realistic scenarios of organism exposure to nanoparticles. An indoor mesocosm experiment simulating an aquatic stream ecosystem was conducted to assess the toxicokinetics and bioaccumulation of silver sulfide nanoparticles (Ag2S NPs) and AgNO3 in the freshwater invertebrates Girardia tigrina, Physa acuta and Chironomus riparius, and determine if previous single-species tests can predict bioaccumulation in the mesocosm. Water was daily spiked at 10 µg Ag L-1. Ag concentrations in water and sediment reached values of 13.4 µg Ag L-1 and 0.30 µg Ag g-1 in the Ag2S NP exposure, and 12.8 µg Ag L-1 and 0.20 µg Ag g-1 in the AgNO3. Silver was bioaccumulated by the species from both treatments, but with approximately 1.5, 3 and 11 times higher body Ag concentrations in AgNO3 compared to Ag2S NP exposures in snails, chironomids and planarians, respectively. In the Ag2S NP exposures, the observed uptake was probably of the particulate form. This demonstrates that this more environmentally relevant Ag nanoform may be bioavailable for uptake by benthic organisms. Interspecies interactions likely occurred, namely predation (planarians fed on chironomids and snails), which somehow influenced Ag uptake/bioaccumulation, possibly by altering organisms´ foraging behaviour. Higher Ag uptake rate constants were determined for AgNO3 (0.64, 80.4 and 1.12 Lwater g-1organism day-1) than for Ag2S NPs (0.05, 2.65 and 0.32 Lwater g-1organism day-1) for planarians, snails and chironomids, respectively. Biomagnification under environmentally realistic exposure seemed to be low, although it was likely to occur in the food chain P. acuta to G. tigrina exposed to AgNO3. Single-species tests generally could not reliably predict Ag bioaccumulation in the more complex mesocosm scenario. This study provides methodologies/data to better understand exposure, toxicokinetics and bioaccumulation of Ag in complex systems, reinforcing the need to use mesocosm studies to improve the risk assessment of environmental contaminants, specifically NPs, in aquatic environments.


Assuntos
Nanopartículas Metálicas , Animais , Bioacumulação , Nanopartículas Metálicas/toxicidade , Ecossistema , Toxicocinética , Rios
20.
NanoImpact ; 29: 100454, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36781073

RESUMO

Determining the potential for accumulation of Ag from Ag2S NPs as an environmentally relevant form of AgNPs in different terrestrial organisms is an essential component of a realistic risk assessment of AgNP emissions to soils. The objectives of this study were first to determine the uptake kinetics of Ag in mealworms (Tenebrio molitor) and woodlice (Porcellio scaber) exposed to Ag2S NPs in a mesocosm test, and second, to check if the obtained toxicokinetics could be predicted by single-species bioaccumulation tests. In the mesocosms, mealworms and woodlice were exposed together with plants and earthworms in soil columns spiked with 10 µg Ag g-1 dry soil as Ag2S NPs or AgNO3. The total Ag concentrations in the biota were measured after 7, 14, and 28 days of exposure. A one-compartment model was used to calculate the Ag uptake and elimination rate constants. Ag from Ag2S NPs appeared to be taken up by the mealworms with significantly different uptake rate constants in the mesocosm compared to single-species tests (K1 = 0.056 and 1.66 g dry soil g-1 dry body weight day-1, respectively), and a significant difference was found for the Ag bioaccumulation factor (BAFk = 0.79 and 0.15 g dry soil g-1 dry body weight, respectively). Woodlice did not accumulate Ag from Ag2S NPs in both tests, but uptake from AgNO3 was significantly slower in mesocosm than in single-species tests (K1 = 0.037 and 0.26 g dry soil g-1 dry body weight day-1, respectively). Our results are of high significance because they show that single-species tests may not be a good predictor for the Ag uptake in mealworms and woodlice in exposure systems having greater levels of biological complexity. Nevertheless, single-species tests could be used as a fast screening approach to assess the potential of a substance to accumulate in biota before more complex tests are conducted.


Assuntos
Isópodes , Nanopartículas Metálicas , Tenebrio , Animais , Toxicocinética , Prata/análise , Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA