Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Dev Med Child Neurol ; 65(12): 1629-1638, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37243486

RESUMO

AIM: To obtain insights into the effects of fatigue on the kinematics, kinetics, and energy cost of walking (ECoW) in children with cerebral palsy (CP). METHOD: In this prospective observational study, 12 children with CP (mean age 12 years 9 months, SD 2 years 7 months; four females, eight males) and 15 typically developing children (mean age 10 years 8 months, SD 2 years 4 months; seven females, eight males) followed a prolonged intensity-based walking protocol on an instrumented treadmill, combined with gas analysis measurements. The protocol consisted of consecutive stages, including a 6-minute walking exercise (6MW) at comfortable speed, 2 minutes of moderate-intensity walking (MIW) (with a heart rate > 70% of its predicted maximal), and 4 minutes walking after MIW. If necessary, the speed and slope were incremented to reach MIW. Outcomes were evaluated at the beginning and end of the 6MW and after MIW. RESULTS: With prolonged walking, Gait Profile Scores deteriorated slightly for both groups (p < 0.01). Knee flexion increased during early stance (p = 0.004) and ankle dorsiflexion increased during late stance (p = 0.034) in children with CP only. Negligible effects were found for kinetics. No demonstrable change in ECoW was found in either group (p = 0.195). INTERPRETATION: Kinematic deviations in children with CP are progressive with prolonged walking. The large variation in adaptations indicates that an individual approach is recommended to investigate the effects of physical fatigue on gait in clinical practice.


Assuntos
Paralisia Cerebral , Masculino , Feminino , Humanos , Criança , Paralisia Cerebral/complicações , Marcha/fisiologia , Caminhada/fisiologia , Teste de Esforço , Fadiga/etiologia , Fenômenos Biomecânicos
2.
Dev Med Child Neurol ; 65(9): 1157-1173, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36750309

RESUMO

AIM: To explore altered structural and functional connectivity and network organization in cerebral palsy (CP), by clinical CP subtype (unilateral spastic, bilateral spastic, dyskinetic, and ataxic CP). METHOD: PubMed and Embase databases were systematically searched. Extracted data included clinical characteristics, analyses, outcome measures, and results. RESULTS: Sixty-five studies were included, of which 50 investigated structural connectivity, and 20 investigated functional connectivity using functional magnetic resonance imaging (14 studies) or electroencephalography (six studies). Five of the 50 studies of structural connectivity and one of 14 of functional connectivity investigated whole-brain network organization. Most studies included patients with unilateral spastic CP; none included ataxic CP. INTERPRETATION: Differences in structural and functional connectivity were observed between investigated clinical CP subtypes and typically developing individuals on a wide variety of measures, including efferent, afferent, interhemispheric, and intrahemispheric connections. Directions for future research include extending knowledge in underrepresented CP subtypes and methodologies, evaluating the prognostic potential of specific connectivity and network measures in neonates, and understanding therapeutic effects on brain connectivity.


Assuntos
Paralisia Cerebral , Recém-Nascido , Humanos , Espasticidade Muscular , Encéfalo , Imageamento por Ressonância Magnética/métodos
3.
J Neuroeng Rehabil ; 20(1): 19, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36750869

RESUMO

BACKGROUND: Spasticity, i.e. stretch hyperreflexia, increases joint resistance similar to symptoms like hypertonia and contractures. Botulinum neurotoxin-A (BoNT-A) injections are a widely used intervention to reduce spasticity. BoNT-A effects on spasticity are poorly understood, because clinical measures, e.g. modified Ashworth scale (MAS), cannot differentiate between the symptoms affecting joint resistance. This paper distinguishes the contributions of the reflexive and intrinsic pathways to ankle joint hyper-resistance for participants treated with BoNT-A injections. We hypothesized that the overall joint resistance and reflexive contribution decrease 6 weeks after injection, while returning close to baseline after 12 weeks. METHODS: Nine participants with spasticity after spinal cord injury or after stroke were evaluated across three sessions: 0, 6 and 12 weeks after BoNT-A injection in the calf muscles. Evaluation included clinical measures (MAS, Tardieu Scale) and motorized instrumented assessment using the instrumented spasticity test (SPAT) and parallel-cascade (PC) system identification. Assessments included measures for: (1) overall resistance from MAS and fast velocity SPAT; (2) reflexive resistance contribution from Tardieu Scale, difference between fast and slow velocity SPAT and PC reflexive gain; and (3) intrinsic resistance contribution from slow velocity SPAT and PC intrinsic stiffness/damping. RESULTS: Individually, the hypothesized BoNT-A effect, the combination of a reduced resistance (week 6) and return towards baseline (week 12), was observed in the MAS (5 participants), fast velocity SPAT (2 participants), Tardieu Scale (2 participants), SPAT (1 participant) and reflexive gain (4 participants). On group-level, the hypothesis was only confirmed for the MAS, which showed a significant resistance reduction at week 6. All instrumented measures were strongly correlated when quantifying the same resistance contribution. CONCLUSION: At group-level, the expected joint resistance reduction due to BoNT-A injections was only observed in the MAS (overall resistance). This observed reduction could not be attributed to an unambiguous group-level reduction of the reflexive resistance contribution, as no instrumented measure confirmed the hypothesis. Validity of the instrumented measures was supported through a strong association between different assessment methods. Therefore, further quantification of the individual contributions to joint resistance changes using instrumented measures across a large sample size are essential to understand the heterogeneous response to BoNT-A injections.


Assuntos
Toxinas Botulínicas Tipo A , Fármacos Neuromusculares , Acidente Vascular Cerebral , Humanos , Toxinas Botulínicas Tipo A/uso terapêutico , Fármacos Neuromusculares/uso terapêutico , Articulação do Tornozelo , Músculo Esquelético , Espasticidade Muscular/etiologia , Acidente Vascular Cerebral/complicações , Resultado do Tratamento
4.
J Appl Biomech ; 39(5): 334-346, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37532263

RESUMO

Spasticity is a common impairment within pediatric neuromusculoskeletal disorders. How spasticity contributes to gait deviations is important for treatment selection. Our aim was to evaluate the pathophysiological mechanisms underlying gait deviations seen in children with spasticity, using predictive simulations. A cluster analysis was performed to extract distinct gait patterns from experimental gait data of 17 children with spasticity to be used as comparative validation data. A forward dynamic simulation framework was employed to predict gait with either velocity- or force-based hyperreflexia. This framework entailed a generic musculoskeletal model controlled by reflexes and supraspinal drive, governed by a multiobjective cost function. Hyperreflexia values were optimized to enable the simulated gait to best match experimental gait patterns. Three experimental gait patterns were extracted: (1) increased knee flexion, (2) increased ankle plantar flexion, and (3) increased knee flexion and ankle plantar flexion when compared with typical gait. Overall, velocity-based hyperreflexia outperformed force-based hyperreflexia. The first gait pattern could mostly be explained by rectus femoris and hamstrings velocity-based hyperreflexia, the second by gastrocnemius velocity-based hyperreflexia, and the third by gastrocnemius, soleus, and hamstrings velocity-based hyperreflexia. This study shows how velocity-based hyperreflexia from specific muscles contributes to different spastic gait patterns, which may help in providing targeted treatment.

5.
Sensors (Basel) ; 22(12)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35746168

RESUMO

Accurate and reliable measurement of the severity of dystonia is essential for the indication, evaluation, monitoring and fine-tuning of treatments. Assessment of dystonia in children and adolescents with dyskinetic cerebral palsy (CP) is now commonly performed by visual evaluation either directly in the doctor's office or from video recordings using standardized scales. Both methods lack objectivity and require much time and effort of clinical experts. Only a snapshot of the severity of dyskinetic movements (i.e., choreoathetosis and dystonia) is captured, and they are known to fluctuate over time and can increase with fatigue, pain, stress or emotions, which likely happens in a clinical environment. The goal of this study was to investigate whether it is feasible to use home-based measurements to assess and evaluate the severity of dystonia using smartphone-coupled inertial sensors and machine learning. Video and sensor data during both active and rest situations from 12 patients were collected outside a clinical setting. Three clinicians analyzed the videos and clinically scored the dystonia of the extremities on a 0-4 scale, following the definition of amplitude of the Dyskinesia Impairment Scale. The clinical scores and the sensor data were coupled to train different machine learning models using cross-validation. The average F1 scores (0.67 ± 0.19 for lower extremities and 0.68 ± 0.14 for upper extremities) in independent test datasets indicate that it is possible to detected dystonia automatically using individually trained models. The predictions could complement standard dyskinetic CP measures by providing frequent, objective, real-world assessments that could enhance clinical care. A generalized model, trained with data from other subjects, shows lower F1 scores (0.45 for lower extremities and 0.34 for upper extremities), likely due to a lack of training data and dissimilarities between subjects. However, the generalized model is reasonably able to distinguish between high and lower scores. Future research should focus on gathering more high-quality data and study how the models perform over the whole day.


Assuntos
Paralisia Cerebral , Distonia , Distúrbios Distônicos , Adolescente , Paralisia Cerebral/diagnóstico , Criança , Distonia/diagnóstico , Humanos , Aprendizado de Máquina , Índice de Gravidade de Doença , Smartphone , Tecnologia
6.
J Neuroeng Rehabil ; 18(1): 151, 2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34663392

RESUMO

BACKGROUND: As hyperactive muscle stretch reflexes hinder movement in patients with central nervous system disorders, they are a common target of treatment. To improve treatment evaluation, hyperactive reflexes should be assessed during activities as walking rather than passively. This study systematically explores the feasibility, reliability and validity of sudden treadmill perturbations to evoke and quantify calf muscle stretch reflexes during walking in children with neurological disorders. METHODS: We performed an observational cross-sectional study including 24 children with cerebral palsy (CP; 6-16 years) and 14 typically developing children (TD; 6-15 years). Short belt accelerations were applied at three different intensities while children walked at comfortable speed. Lower leg kinematics, musculo-tendon lengthening and velocity, muscle activity and spatiotemporal parameters were measured to analyze perturbation responses. RESULTS: We first demonstrated protocol feasibility: the protocol was completed by all but three children who ceased participation due to fatigue. All remaining children were able to maintain their gait pattern during perturbation trials without anticipatory adaptations in ankle kinematics, spatiotemporal parameters and muscle activity. Second, we showed the protocol's reliability: there was no systematic change in muscle response over time (P = 0.21-0.54) and a bootstrapping procedure indicated sufficient number of perturbations, as the last perturbation repetition only reduced variability by ~ 2%. Third, we evaluated construct validity by showing that responses comply with neurophysiological criteria for stretch reflexes: perturbations superimposed calf muscle lengthening (P < 0.001 for both CP and TD) in all but one participant. This elicited increased calf muscle activity (359 ± 190% for CP and 231 ± 68% for TD, both P < 0.001) in the gastrocnemius medialis muscle, which increased with perturbation intensity (P < 0.001), according to the velocity-dependent nature of stretch reflexes. Finally, construct validity was shown from a clinical perspective: stretch reflexes were 1.7 times higher for CP than TD for the gastrocnemius medialis muscle (P = 0.017). CONCLUSIONS: The feasibility and reliability of the protocol, as well as the construct validity-shown by the exaggerated velocity-dependent nature of the measured responses-strongly support the use of treadmill perturbations to quantify stretch hyperreflexia during gait. We therefore provided a framework which can be used to inform clinical decision making and treatment evaluation.


Assuntos
Paralisia Cerebral , Criança , Estudos Transversais , Humanos , Reflexo Anormal , Reflexo de Estiramento , Reprodutibilidade dos Testes
7.
J Neuroeng Rehabil ; 17(1): 39, 2020 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-32138731

RESUMO

BACKGROUND: In this systematic review we investigate which instrumented measurements are available to assess motor impairments, related activity limitations and participation restrictions in children and young adults with dyskinetic cerebral palsy. We aim to classify these instrumented measurements using the categories of the international classification of functioning, disability and health for children and youth (ICF-CY) and provide an overview of the outcome parameters. METHODS: A systematic literature search was performed in November 2019. We electronically searched Pubmed, Embase and Scopus databases. Search blocks included (a) cerebral palsy, (b) athetosis, dystonia and/or dyskinesia, (c) age 2-24 years and (d) instrumented measurements (using keywords such as biomechanics, sensors, smartphone, and robot). RESULTS: Our search yielded 4537 articles. After inspection of titles and abstracts, a full text of 245 of those articles were included and assessed for further eligibility. A total of 49 articles met our inclusion criteria. A broad spectrum of instruments and technologies are used to assess motor function in dyskinetic cerebral palsy, with the majority using 3D motion capture and surface electromyography. Only for a small number of instruments methodological quality was assessed, with only one study showing an adequate assessment of test-retest reliability. The majority of studies was at ICF-CY function and structure level and assessed control of voluntary movement (29 of 49) mainly in the upper extremity, followed by assessment of involuntary movements (15 of 49), muscle tone/motor reflex (6 of 49), gait pattern (5 of 49) and muscle power (2 of 49). At ICF-CY level of activities and participation hand and arm use (9 of 49), fine hand use (5 of 49), lifting and carrying objects (3 of 49), maintaining a body position (2 of 49), walking (1 of 49) and moving around using equipment (1 of 49) was assessed. Only a few methods are potentially suitable outside the clinical environment (e.g. inertial sensors, accelerometers). CONCLUSION: Although the current review shows the potential of several instrumented methods to be used as objective outcome measures in dyskinetic cerebral palsy, their methodological quality is still unknown. Future development should focus on evaluating clinimetrics, including validating against clinical meaningfulness. New technological developments should aim for measurements that can be applied outside the laboratory.


Assuntos
Paralisia Cerebral/complicações , Paralisia Cerebral/fisiopatologia , Avaliação da Deficiência , Transtornos Motores/diagnóstico , Transtornos Motores/etiologia , Adolescente , Criança , Pessoas com Deficiência , Humanos , Adulto Jovem
8.
Arch Phys Med Rehabil ; 100(4): 598-605, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30447196

RESUMO

OBJECTIVE: To investigate the immediate response to avatar-based biofeedback on 3 clinically important gait parameters: step length, knee extension, and ankle power in children with cerebral palsy (CP). DESIGN: Repeated measures design. SETTING: Rehabilitation clinic. PARTICIPANTS: Children with spastic paresis (N=22; 10.5±3.1y), able to walk without assistive devices. INTERVENTION: Children walked on a treadmill with a virtual reality environment. Following baseline gait analysis, they were challenged to improve aspects of gait. Children visualized themselves as an avatar, representing movement in real time. They underwent a series of 2-minute trials receiving avatar-based biofeedback on step length, knee extension, and ankle power. To investigate optimization of biofeedback visualization, additional trials in which knee extension was visualized as a simple bar with no avatar; and avatar alone with no specific biofeedback were carried out. MAIN OUTCOME MEASURES: Gait pattern, as measured by joint angles, powers, and spatiotemporal parameters, were compared between baseline and biofeedback trials. RESULTS: Participants were able to adapt gait pattern with biofeedback, in an immediate response, reaching large increases in ankle power generation at push-off (37.7%) and clinically important improvements in knee extension (7.4o) and step length (12.7%). Biofeedback on one parameter had indirect influence on other aspects of gait. CONCLUSION: Children with CP show capacity in motor function to achieve improvements in clinically important aspects of gait. Visualizing biofeedback with an avatar was subjectively preferential compared to a simplified bar presentation of knee angle. Future studies are required to investigate if observed transient effects of biofeedback can be retained with prolonged training to test whether biofeedback-based gait training may be implemented as a therapy tool.


Assuntos
Biorretroalimentação Psicológica/métodos , Paralisia Cerebral/terapia , Terapia por Exercício/métodos , Marcha/fisiologia , Adolescente , Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Paralisia Cerebral/fisiopatologia , Criança , Pré-Escolar , Simulação por Computador , Feminino , Humanos , Joelho/fisiopatologia , Masculino , Resultado do Tratamento
9.
Arch Phys Med Rehabil ; 100(3): 474-480, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-29981315

RESUMO

OBJECTIVE: To identify factors associated with long-term improvement in gait in children after selective dorsal rhizotomy (SDR). DESIGN: Retrospective cohort study. SETTING: University medical center. PARTICIPANTS: Children (N=36) (age 4-13y) with spastic diplegia of Gross Motor Function Classification System (GMFCS) level I (n=14), II (n=15), and III (n=7) were included retrospectively from the database of our hospital. Children underwent SDR between January 1999 and May 2011. Patients were included if they received clinical gait analysis before and 5 years post-SDR, age >4 years at time of SDR and if brain magnetic resonance imaging (MRI) scan was available. INTERVENTION: Selective dorsal rhizotomy. MAIN OUTCOME MEASURES: Overall gait quality was assessed with Edinburgh visual gait score (EVGS), before and 5 years after SDR. In addition, knee and ankle angles at initial contact and midstance were evaluated. To identify predictors for gait improvement, several factors were evaluated including functional mobility level GMFCS, presence of white matter abnormalities on brain MRI, and selective motor control during gait (synergy analysis). RESULTS: Overall gait quality improved after SDR, with a large variation between patients. Multiple linear regression analysis revealed that worse score on EVGS and better GMFCS were independently related to gait improvement. Gait improved more in children with GMFCS I and II compared to III. No differences were observed between children with or without white matter abnormalities on brain MRI. Selective motor control during gait was predictive for improvement of knee angle at initial contact and midstance, but not for EVGS. CONCLUSION: Functional mobility level and baseline gait quality are both important factors to predict gait outcomes after SDR. If candidates are well selected, SDR can be a successful intervention to improve gait both in children with brain MRI abnormalities as well as other causes of spastic diplegia.


Assuntos
Paralisia Cerebral/fisiopatologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/cirurgia , Marcha/fisiologia , Rizotomia/métodos , Adolescente , Tornozelo/fisiopatologia , Paralisia Cerebral/complicações , Paralisia Cerebral/cirurgia , Criança , Pré-Escolar , Feminino , Análise da Marcha , Transtornos Neurológicos da Marcha/etiologia , Humanos , Joelho/fisiopatologia , Masculino , Seleção de Pacientes , Período Pós-Operatório , Amplitude de Movimento Articular , Estudos Retrospectivos , Tempo , Fatores de Tempo , Resultado do Tratamento
10.
Dev Med Child Neurol ; 60(9): 866-883, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29512110

RESUMO

AIM: The aim of this systematic review was to investigate the effects of functional gait training on walking ability in children and young adults with cerebral palsy (CP). METHOD: The review was conducted using standardized methodology, searching four electronic databases (PubMed, Embase, CINAHL, Web of Science) for relevant literature published between January 1980 and January 2017. Included studies involved training with a focus on actively practising the task of walking as an intervention while reporting outcome measures relating to walking ability. RESULTS: Forty-one studies were identified, with 11 randomized controlled trials included. There is strong evidence that functional gait training results in clinically important benefits for children and young adults with CP, with a therapeutic goal of improved walking speed. Functional gait training was found to have a moderate positive effect on walking speed over standard physical therapy (effect size 0.79, p=0.04). Further, there is weaker yet relatively consistent evidence that functional gait training can also benefit walking endurance and gait-related gross motor function. INTERPRETATION: There is promising evidence that functional gait training is a safe, feasible, and effective intervention to target improved walking ability in children and young adults with CP. The addition of virtual reality and biofeedback can increase patient engagement and magnify effects. WHAT THIS PAPER ADDS: Functional gait training is a safe, feasible, and effective intervention to improve walking ability. Functional gait training shows larger positive effects on walking speed than standard physical therapy. Walking endurance and gait-related gross motor function can also benefit from functional gait training. Addition of virtual reality and biofeedback shows promise to increase engagement and improve outcomes.


Assuntos
Paralisia Cerebral/reabilitação , Terapia por Exercício , Marcha , Adolescente , Paralisia Cerebral/fisiopatologia , Criança , Humanos , Resultado do Tratamento , Adulto Jovem
12.
Dev Med Child Neurol ; 59(2): 145-151, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27363603

RESUMO

AIM: We compared the outcomes of manual and motorized instrumented ankle spasticity assessments in children with cerebral palsy (CP). METHOD: Ten children with spastic CP (three males, seven females; mean age 11y [standard deviation 3y], range 6-14y; Gross Motor Function Classification System levels I-III) were included. During motorized assessments, fast (100°/s) rotations were imposed around the ankle joint by a motor-driven footplate; during manual assessments, rotations of comparable speed were applied by a therapist using a foot orthotic. Angular range of motion, maximum velocity, acceleration, work, and muscle activity (electromyography [EMG]) of the triceps surae and tibialis anterior were compared during passive muscle stretch between motorized and manual assessments. Both movement profiles were also compared to CP gait ankle movement profile. RESULTS: The imposed movement profile differed between methods, with the motorized assessment reaching higher maximum acceleration. Despite equal maximum velocity, the triceps surae were more often activated in motorized assessments, with low agreement of 44% to 72% (κ≤0) for EMG onset occurrence between methods. The manually applied ankle velocity profile matched more closely with the gait profile. INTERPRETATION: The differences in acceleration possibly account for the different muscle responses, which may suggest acceleration, rather than velocity-dependency of the stretch reflex. Future prototypes of instrumented spasticity assessments should standardize movement profiles, preferably by developing profiles that mimic functional tasks such as walking.


Assuntos
Paralisia Cerebral/complicações , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/etiologia , Exame Neurológico/instrumentação , Exame Neurológico/métodos , Adolescente , Articulação do Tornozelo/fisiopatologia , Fenômenos Biomecânicos , Criança , Eletromiografia , Feminino , Humanos , Masculino , Músculo Esquelético/fisiopatologia , Amplitude de Movimento Articular/fisiologia , Estatísticas não Paramétricas , Caminhada
13.
Sci Rep ; 14(1): 11910, 2024 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-38789587

RESUMO

The aim of this comparative, cross-sectional study was to determine whether markerless motion capture can track deviating gait patterns in children with cerebral palsy (CP) to a similar extent as marker-based motion capturing. Clinical gait analysis (CGA) was performed for 30 children with spastic CP and 15 typically developing (TD) children. Marker data were processed with the Human Body Model and video files with Theia3D markerless software, to calculate joint angles for both systems. Statistical parametric mapping paired t-tests were used to compare the trunk, pelvis, hip, knee and ankle joint angles, for both TD and CP, as well as for the deviation from the norm in the CP group. Individual differences were quantified using mean absolute differences. Markerless motion capture was able to track frontal plane angles and sagittal plane knee and ankle angles well, but individual deviations in pelvic tilt and transverse hip rotation as present in CP were not captured by the system. Markerless motion capture is a promising new method for CGA in children with CP, but requires improvement to better capture several clinically relevant deviations especially in pelvic tilt and transverse hip rotation.


Assuntos
Paralisia Cerebral , Análise da Marcha , Humanos , Paralisia Cerebral/fisiopatologia , Criança , Masculino , Feminino , Análise da Marcha/métodos , Estudos Transversais , Marcha/fisiologia , Articulação do Joelho/fisiopatologia , Articulação do Tornozelo/fisiopatologia , Articulação do Quadril/fisiopatologia , Fenômenos Biomecânicos , Adolescente , Amplitude de Movimento Articular , Captura de Movimento
14.
Gait Posture ; 110: 144-149, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38608379

RESUMO

BACKGROUND: Foot deformities (e.g. planovalgus and cavovarus) are very common in children with spastic cerebral palsy (CP), with the midfoot often being involved. Dynamic foot function can be assessed with 3D gait analysis including a multi-segment foot model. Incorporating a midfoot segment in such a model, allows quantification of separate Chopart and Lisfranc joint kinematics. Yet, midfoot kinematics have not previously been reported in CP. RESEARCH QUESTIONS: What is the difference in multi-segment kinematics including midfoot joints between common foot deformities in CP and typically-developing feet? METHODS: 103 feet of 57 children with spastic CP and related conditions were retrospectively included and compared with 15 typically-developing children. All children underwent clinical gait analysis with the Amsterdam Foot Model marker set. Multi-segment foot kinematics were calculated for three strides per foot and averaged. A k-means cluster analysis was performed to identify foot deformity groups that were present within CP data. The deformity type represented by each cluster was based on the foot posture index. Kinematic output of the clusters was compared to typically-developing data for a static standing trial and for the range of motion and kinematic waveforms during walking, using regular and SPM independent t-tests respectively. RESULTS: A neutral, planovalgus and varus cluster were identified. Neutral feet showed mostly similar kinematics as typically-developing data. Planovalgus feet showed increased ankle valgus and Chopart dorsiflexion, eversion and abduction. Varus feet showed increased ankle varus and Chopart inversion and adduction. SIGNIFICANCE: This study is the first to describe Chopart and Lisfranc joint kinematics in different foot deformities of children with CP. It shows that adding a midfoot segment can provide additional clinical and kinematic information. It highlights joint angles that are more distinctive between deformities, which could be helpful to optimize the use of multi-segment foot kinematics in the clinical decision making process.


Assuntos
Paralisia Cerebral , Humanos , Paralisia Cerebral/fisiopatologia , Criança , Fenômenos Biomecânicos , Masculino , Feminino , Estudos Retrospectivos , Pé/fisiopatologia , Amplitude de Movimento Articular/fisiologia , Análise da Marcha , Marcha/fisiologia , Transtornos Neurológicos da Marcha/fisiopatologia , Transtornos Neurológicos da Marcha/etiologia , Deformidades do Pé/fisiopatologia , Articulações do Pé/fisiopatologia , Pré-Escolar , Adolescente
15.
Front Bioeng Biotechnol ; 12: 1369507, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38846804

RESUMO

Neuromuscular disorders often lead to ankle plantar flexor muscle weakness, which impairs ankle push-off power and forward propulsion during gait. To improve walking speed and reduce metabolic cost of transport (mCoT), patients with plantar flexor weakness are provided dorsal-leaf spring ankle-foot orthoses (AFOs). It is widely believed that mCoT during gait depends on the AFO stiffness and an optimal AFO stiffness that minimizes mCoT exists. The biomechanics behind why and how an optimal stiffness exists and benefits individuals with plantar flexor weakness are not well understood. We hypothesized that the AFO would reduce the required support moment and, hence, metabolic cost contributions of the ankle plantar flexor and knee extensor muscles during stance, and reduce hip flexor metabolic cost to initiate swing. To test these hypotheses, we generated neuromusculoskeletal simulations to represent gait of an individual with bilateral plantar flexor weakness wearing an AFO with varying stiffness. Predictions were based on the objective of minimizing mCoT, loading rates at impact and head accelerations at each stiffness level, and the motor patterns were determined via dynamic optimization. The predictive gait simulation results were compared to experimental data from subjects with bilateral plantar flexor weakness walking with varying AFO stiffness. Our simulations demonstrated that reductions in mCoT with increasing stiffness were attributed to reductions in quadriceps metabolic cost during midstance. Increases in mCoT above optimum stiffness were attributed to the increasing metabolic cost of both hip flexor and hamstrings muscles. The insights gained from our predictive gait simulations could inform clinicians on the prescription of personalized AFOs. With further model individualization, simulations based on mCoT minimization may sufficiently predict adaptations to an AFO in individuals with plantar flexor weakness.

16.
Clin Biomech (Bristol, Avon) ; 111: 106152, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091916

RESUMO

BACKGROUND: Most cases of toe walking in children are idiopathic. We used pathology-specific neuromusculoskeletal predictive simulations to identify potential underlying neural and muscular mechanisms contributing to idiopathic toe walking. METHODS: A musculotendon contracture was added to the ankle plantarflexors of a generic musculoskeletal model to represent a pathology-specific contracture model, matching the reduced ankle dorsiflexion range-of-motion in a cohort of children with idiopathic toe walking. This model was employed in a forward dynamic simulation controlled by reflexes and supraspinal drive, governed by a multi-objective cost function to predict gait patterns with the contracture model. We validated the predicted gait using experimental gait data from children with idiopathic toe walking with ankle contracture, by calculating the root mean square errors averaged over all biomechanical variables. FINDINGS: A predictive simulation with the pathology-specific model with contracture approached experimental ITW data (root mean square error = 1.37SD). Gastrocnemius activation was doubled from typical gait simulations, but lacked a peak in early stance as present in electromyography. This synthesised idiopathic toe walking was more costly for all cost function criteria than typical gait simulation. Also, it employed a different neural control strategy, with increased length- and velocity-based reflex gains to the plantarflexors in early stance and swing than typical gait simulations. INTERPRETATION: The simulations provide insights into how a musculotendon contracture combined with altered neural control could contribute to idiopathic toe walking. Insights into these neuromuscular mechanisms could guide future computational and experimental studies to gain improved insight into the cause of idiopathic toe walking.


Assuntos
Contratura , Caminhada , Criança , Humanos , Caminhada/fisiologia , Dedos do Pé/fisiologia , Fenômenos Biomecânicos , Marcha/fisiologia
17.
J Biomech ; 166: 112001, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38527409

RESUMO

Segment coordinate systems (CSs) of marker-based multi-segment foot models are used to measure foot kinematics, however their relationship to the underlying bony anatomy is barely studied. The aim of this study was to compare marker-based CSs (MCSs) with bone morphology-based CSs (BCSs) for the hindfoot and forefoot. Markers were placed on the right foot of fifteen healthy adults according to the Oxford, Rizzoli and Amsterdam Foot Model (OFM, RFM and AFM, respectively). A CT scan was made while the foot was loaded in a simulated weight-bearing device. BCSs were based on axes of inertia. The orientation difference between BCSs and MCSs was quantified in helical and 3D Euler angles. To determine whether the marker models were able to capture inter-subject variability in bone poses, linear regressions were performed. Compared to the hindfoot BCS, all MCSs were more toward plantar flexion and internal rotation, and RFM was also oriented toward more inversion. Compared to the forefoot BCS, OFM and RFM were oriented more toward dorsal and plantar flexion, respectively, and internal rotation, while AFM was not statistically different in the sagittal and transverse plane. In the frontal plane, OFM was more toward eversion and RFM and AFM more toward inversion compared to BCS. Inter-subject bone pose variability was captured with RFM and AFM in most planes of the hindfoot and forefoot, while this variability was not captured by OFM. When interpreting multi-segment foot model data it is important to realize that MCSs and BCSs do not always align.


Assuntos
, Marcha , Adulto , Humanos , Pé/diagnóstico por imagem , Caminhada , Mãos , Extremidade Inferior , Fenômenos Biomecânicos
18.
Gait Posture ; 102: 10-17, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36870265

RESUMO

BACKGROUND: Children with cerebral palsy often show deviating calf muscle activation patterns during gait, with excess activation during early stance and insufficient activation during push-off. RESEARCH QUESTION: Can children with cerebral palsy improve their calf muscle activation patterns during gait using one session of biofeedback-driven gaming? METHODS: Eighteen children (6-17 y) with spastic cerebral palsy received implicit game-based biofeedback on electromyographic activity of the calf muscle (soleus or gastrocnemius medialis) while walking on a treadmill during one session. Biofeedback alternately aimed to reduce early stance activity, increase push-off activity, and both combined. Early stance and push-off activity and the double-bump-index (early stance divided by push-off activity) were determined during baseline and walking with feedback. Changes were assessed at group level using repeated measures ANOVA with simple contrast or Friedman test with post-hoc Wilcoxon signed rank test, as well as individually using independent t-tests or Wilcoxon rank sum tests. Perceived competence and interest-enjoyment were assessed through a questionnaire. RESULTS: Children successfully decreased their electromyographic activity during early stance feedback trials (relative decrease of 6.8 ± 12.2 %, P = 0.025), with a trend during the combined feedback trials (6.5 ± 13.9 %, P = 0.055), and increased their electromyographic activity during push-off feedback trials (8.1 ± 15.8 %, P = 0.038). Individual improvements were seen in twelve of eighteen participants. All children experienced high levels of interest-enjoyment (8.4/10) and perceived competence (8.1/10). SIGNIFICANCE: This exploratory study suggests that children with cerebral palsy can achieve small within-session improvements of their calf muscle activation pattern when provided with implicit biofeedback-driven gaming in an enjoyable manner. Follow-up gait training studies can incorporate this method to assess retention and long-term functional benefits of electromyographic biofeedback-driven gaming.


Assuntos
Paralisia Cerebral , Jogos de Vídeo , Criança , Humanos , Biorretroalimentação Psicológica/métodos , Eletromiografia , Paralisia Cerebral/complicações , Músculo Esquelético , Marcha/fisiologia , Caminhada/fisiologia
19.
Gait Posture ; 101: 138-144, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36841120

RESUMO

BACKGROUND: Ultrasonography with motion analysis enables dynamic imaging of medial gastrocnemius (MG) muscles and tendons during gait. This revealed pathological muscle-tendon dynamics in children with spastic cerebral palsy (CP) compared to typically developing (TD) children. However, wearing an ultrasound probe on the lower leg could interfere with gait and bias muscle length changes observed with ultrasound. RESEARCH QUESTION: Does wearing an ultrasound probe on the MG influence gait in children with CP and TD children? METHODS: Eighteen children with spastic CP and 16 age-matched TD children walked at comfortable walking speed on an instrumented treadmill. One baseline gait condition (BASE) and two conditions with an ultrasound probe and custom-made probe holder were measured: on the mid-muscle fascicles (FAS) and on the muscle-tendon junction (MTJ). The effect of condition and group on spatiotemporal parameters, hip, knee and ankle kinematics, ankle moment, ankle power, and modeled MG muscle-tendon unit (MTU) length was assessed using two-way repeated measures ANOVA's. Statistical non-parametric mapping was applied for time-series. Post-hoc paired-samples t-tests were conducted, and the root mean square difference was calculated for significant parts. RESULTS: Children took wider steps during FAS (CP, TD) and MTJ (TD) compared to BASE, and during FAS compared to MTJ (CP). Hip extension was lower (2.7°) during terminal stance for MTJ compared to FAS for TD only. There was less swing knee flexion (FAS 4.9°; MTJ 4.0°) and ankle plantarflexion around toe-off (FAS 3.0°; MTJ 2.4°) for both ultrasound placements, with no group effect. Power absorption during loading response was slightly increased for both ultrasound placements (0.12 W/kg), with no group effect. MTU shortened less in swing for both ultrasound placements (FAS 3.6 mm; MTJ 3.7 mm), with no group effect. SIGNIFICANCE: Wearing an ultrasound probe causes minimal lower-limb gait alterations and MTU length changes that are mostly similar in CP and TD.


Assuntos
Paralisia Cerebral , Humanos , Criança , Marcha/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Caminhada/fisiologia , Tendões , Fenômenos Biomecânicos
20.
Ann Biomed Eng ; 51(5): 938-950, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36380165

RESUMO

Neuromusculoskeletal models can be used to evaluate aberrant muscle function in cerebral palsy (CP), for example by estimating muscle and joint contact forces during gait. However, to be accurate, models should include representative musculotendon parameters. We aimed to estimate personalised parameters that capture the mechanical behaviour of the plantarflexors in children with CP and typically developing (TD) children. Ankle angle (using motion capture), torque (using a load-cell), and medial gastrocnemius fascicle lengths (using ultrasound) were measured during slow passive ankle dorsiflexion rotation for thirteen children with spastic CP and thirteen TD children. Per subject, the measured rotation was input to a scaled OpenSim model to simulate the torque and fascicle length output. Musculotendon model parameters were personalised by the best match between simulated and experimental torque-angle and fascicle length-angle curves according to a least-squares fit. Personalised tendon slack lengths were significantly longer and optimal fibre lengths significantly shorter in CP than model defaults and than in TD. Personalised tendon compliance was substantially higher in both groups compared to the model default. The presented method to personalise musculotendon parameters will likely yield more accurate simulations of subject-specific muscle mechanics, to help us understand the effects of altered musculotendon properties in CP.


Assuntos
Paralisia Cerebral , Humanos , Criança , Músculo Esquelético/fisiologia , Tendões , Tornozelo , Articulação do Tornozelo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA