Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Circulation ; 149(9): 669-683, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38152968

RESUMO

BACKGROUND: Genetic and experimental studies support a causal involvement of IL-6 (interleukin-6) signaling in atheroprogression. Although trials targeting IL-6 signaling are underway, any benefits must be balanced against an impaired host immune response. Dissecting the mechanisms that mediate the effects of IL-6 signaling on atherosclerosis could offer insights about novel drug targets with more specific effects. METHODS: Leveraging data from 522 681 individuals, we constructed a genetic instrument of 26 variants in the gene encoding the IL-6R (IL-6 receptor) that proxied for pharmacological IL-6R inhibition. Using Mendelian randomization, we assessed its effects on 3281 plasma proteins quantified with an aptamer-based assay in the INTERVAL cohort (n=3301). Using mediation Mendelian randomization, we explored proteomic mediators of the effects of genetically proxied IL-6 signaling on coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease. For significant mediators, we tested associations of their circulating levels with incident cardiovascular events in a population-based study (n=1704) and explored the histological, transcriptomic, and cellular phenotypes correlated with their expression levels in samples from human atherosclerotic lesions. RESULTS: We found significant effects of genetically proxied IL-6 signaling on 70 circulating proteins involved in cytokine production/regulation and immune cell recruitment/differentiation, which correlated with the proteomic effects of pharmacological IL-6R inhibition in a clinical trial. Among the 70 significant proteins, genetically proxied circulating levels of CXCL10 (C-X-C motif chemokine ligand 10) were associated with risk of coronary artery disease, large artery atherosclerotic stroke, and peripheral artery disease, with up to 67% of the effects of genetically downregulated IL-6 signaling on these end points mediated by decreases in CXCL10. Higher midlife circulating CXCL10 levels were associated with a larger number of cardiovascular events over 20 years, whereas higher CXCL10 expression in human atherosclerotic lesions correlated with a larger lipid core and a transcriptomic profile reflecting immune cell infiltration, adaptive immune system activation, and cytokine signaling. CONCLUSIONS: Integrating multiomics data, we found a proteomic signature of IL-6 signaling activation and mediators of its effects on cardiovascular disease. Our analyses suggest the interferon-γ-inducible chemokine CXCL10 to be a potentially causal mediator for atherosclerosis in 3 vascular compartments and, as such, could serve as a promising drug target for atheroprotection.


Assuntos
Aterosclerose , Quimiocina CXCL10 , Interleucina-6 , Proteogenômica , Humanos , Aterosclerose/genética , Quimiocina CXCL10/metabolismo , Doença da Artéria Coronariana/genética , Estudo de Associação Genômica Ampla , Interleucina-6/metabolismo , Análise da Randomização Mendeliana , Doença Arterial Periférica , Proteômica , Acidente Vascular Cerebral/genética
2.
Circ Res ; 133(7): 542-558, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37646165

RESUMO

BACKGROUND: Using proteomics, we aimed to reveal molecular types of human atherosclerotic lesions and study their associations with histology, imaging, and cardiovascular outcomes. METHODS: Two hundred nineteen carotid endarterectomy samples were procured from 120 patients. A sequential protein extraction protocol was employed in conjunction with multiplexed, discovery proteomics. To focus on extracellular proteins, parallel reaction monitoring was employed for targeted proteomics. Proteomic signatures were integrated with bulk, single-cell, and spatial RNA-sequencing data, and validated in 200 patients from the Athero-Express Biobank study. RESULTS: This extensive proteomics analysis identified plaque inflammation and calcification signatures, which were inversely correlated and validated using targeted proteomics. The inflammation signature was characterized by the presence of neutrophil-derived proteins, such as S100A8/9 (calprotectin) and myeloperoxidase, whereas the calcification signature included fetuin-A, osteopontin, and gamma-carboxylated proteins. The proteomics data also revealed sex differences in atherosclerosis, with large-aggregating proteoglycans versican and aggrecan being more abundant in females and exhibiting an inverse correlation with estradiol levels. The integration of RNA-sequencing data attributed the inflammation signature predominantly to neutrophils and macrophages, and the calcification and sex signatures to smooth muscle cells, except for certain plasma proteins that were not expressed but retained in plaques, such as fetuin-A. Dimensionality reduction and machine learning techniques were applied to identify 4 distinct plaque phenotypes based on proteomics data. A protein signature of 4 key proteins (calponin, protein C, serpin H1, and versican) predicted future cardiovascular mortality with an area under the curve of 75% and 67.5% in the discovery and validation cohort, respectively, surpassing the prognostic performance of imaging and histology. CONCLUSIONS: Plaque proteomics redefined clinically relevant patient groups with distinct outcomes, identifying subgroups of male and female patients with elevated risk of future cardiovascular events.


Assuntos
Aterosclerose , Calcinose , Feminino , Humanos , Masculino , Proteômica , Caracteres Sexuais , Versicanas , alfa-2-Glicoproteína-HS
3.
Arterioscler Thromb Vasc Biol ; 44(6): 1419-1431, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38634280

RESUMO

BACKGROUND: Epigenetic age estimators (clocks) are predictive of human mortality risk. However, it is not yet known whether the epigenetic age of atherosclerotic plaques is predictive for the risk of cardiovascular events. METHODS: Whole-genome DNA methylation of human carotid atherosclerotic plaques (n=485) and of blood (n=93) from the Athero-Express endarterectomy cohort was used to calculate epigenetic age acceleration (EAA). EAA was linked to clinical characteristics, plaque histology, and future cardiovascular events (n=136). We studied whole-genome DNA methylation and bulk and single-cell transcriptomics to uncover molecular mechanisms of plaque EAA. We experimentally confirmed our in silico findings using in vitro experiments in primary human coronary endothelial cells. RESULTS: Male and female patients with severe atherosclerosis had a median chronological age of 69 years. The median epigenetic age was 65 years in females (median EAA, -2.2 [interquartile range, -4.3 to 2.2] years) and 68 years in males (median EAA, -0.3 [interquartile range, -2.9 to 3.8] years). Patients with diabetes and a high body mass index had higher plaque EAA. Increased EAA of plaque predicted future events in a 3-year follow-up in a Cox regression model (univariate hazard ratio, 1.7; P=0.0034) and adjusted multivariate model (hazard ratio, 1.56; P=0.02). Plaque EAA predicted outcome independent of blood EAA (hazard ratio, 1.3; P=0.018) and of plaque hemorrhage (hazard ratio, 1.7; P=0.02). Single-cell RNA sequencing in plaque samples from 46 patients in the same cohort revealed smooth muscle and endothelial cells as important cell types in plaque EAA. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally confirmed by TGFß-triggered endothelial-to-mesenchymal transition inducing rapid epigenetic aging in coronary endothelial cells. CONCLUSIONS: Plaque EAA is a strong and independent marker of poor outcome in patients with severe atherosclerosis. Plaque EAA was linked to mesenchymal endothelial and smooth muscle cells. Endothelial-to-mesenchymal transition was associated with EAA, which was experimentally validated. Epigenetic aging mechanisms may provide new targets for treatments that reduce atherosclerosis complications.


Assuntos
Metilação de DNA , Células Endoteliais , Epigênese Genética , Placa Aterosclerótica , Humanos , Masculino , Feminino , Idoso , Prognóstico , Pessoa de Meia-Idade , Células Endoteliais/patologia , Células Endoteliais/metabolismo , Fatores Etários , Doenças das Artérias Carótidas/genética , Doenças das Artérias Carótidas/patologia , Doenças das Artérias Carótidas/cirurgia , Células Cultivadas , Fatores de Risco , Medição de Risco
4.
Hum Mol Genet ; 31(20): 3566-3579, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35234888

RESUMO

Progressive dilation of the infrarenal aortic diameter is a consequence of the ageing process and is considered the main determinant of abdominal aortic aneurysm (AAA). We aimed to investigate the genetic and clinical determinants of abdominal aortic diameter (AAD). We conducted a meta-analysis of genome-wide association studies in 10 cohorts (n = 13 542) imputed to the 1000 Genome Project reference panel including 12 815 subjects in the discovery phase and 727 subjects [Partners Biobank cohort 1 (PBIO)] as replication. Maximum anterior-posterior diameter of the infrarenal aorta was used as AAD. We also included exome array data (n = 14 480) from seven epidemiologic studies. Single-variant and gene-based associations were done using SeqMeta package. A Mendelian randomization analysis was applied to investigate the causal effect of a number of clinical risk factors on AAD. In genome-wide association study (GWAS) on AAD, rs74448815 in the intronic region of LDLRAD4 reached genome-wide significance (beta = -0.02, SE = 0.004, P-value = 2.10 × 10-8). The association replicated in the PBIO1 cohort (P-value = 8.19 × 10-4). In exome-array single-variant analysis (P-value threshold = 9 × 10-7), the lowest P-value was found for rs239259 located in SLC22A20 (beta = 0.007, P-value = 1.2 × 10-5). In the gene-based analysis (P-value threshold = 1.85 × 10-6), PCSK5 showed an association with AAD (P-value = 8.03 × 10-7). Furthermore, in Mendelian randomization analyses, we found evidence for genetic association of pulse pressure (beta = -0.003, P-value = 0.02), triglycerides (beta = -0.16, P-value = 0.008) and height (beta = 0.03, P-value < 0.0001), known risk factors for AAA, consistent with a causal association with AAD. Our findings point to new biology as well as highlighting gene regions in mechanisms that have previously been implicated in the genetics of other vascular diseases.


Assuntos
Estudo de Associação Genômica Ampla , Análise da Randomização Mendeliana , Exoma/genética , Humanos , Polimorfismo de Nucleotídeo Único/genética , Triglicerídeos
5.
Curr Atheroscler Rep ; 26(5): 163-175, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38698167

RESUMO

PURPOSE OF REVIEW: Fatty acid-binding protein 4 (FABP4) plays a role in lipid metabolism and cardiovascular health. In this paper, we cover FABP4 biology, its implications in atherosclerosis from observational studies, genetic factors affecting FABP4 serum levels, and ongoing drug development to target FABP4 and offer insights into future FABP4 research. RECENT FINDINGS: FABP4 impacts cells through JAK2/STAT2 and c-kit pathways, increasing inflammatory and adhesion-related proteins. In addition, FABP4 induces angiogenesis and vascular smooth muscle cell proliferation and migration. FABP4 is established as a reliable predictive biomarker for cardiovascular disease in specific at-risk groups. Genetic studies robustly link PPARG and FABP4 variants to FABP4 serum levels. Considering the potential effects on atherosclerotic lesion development, drug discovery programs have been initiated in search for potent inhibitors of FABP4. Elevated FABP4 levels indicate an increased cardiovascular risk and is causally related to acceleration of atherosclerotic disease, However, clinical trials for FABP4 inhibition are lacking, possibly due to concerns about available compounds' side effects. Further research on FABP4 genetics and its putative causal role in cardiovascular disease is needed, particularly in aging subgroups.


Assuntos
Envelhecimento , Doenças Cardiovasculares , Proteínas de Ligação a Ácido Graxo , Humanos , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/epidemiologia , Envelhecimento/genética , Envelhecimento/fisiologia , Aterosclerose/genética , Aterosclerose/metabolismo , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo
6.
Circ Res ; 131(12): 1004-1017, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36321446

RESUMO

BACKGROUND: Genome-wide association studies have discovered a link between genetic variants on human chromosome 15q26.1 and increased coronary artery disease (CAD) susceptibility; however, the underlying pathobiological mechanism is unclear. This genetic locus contains the FES (FES proto-oncogene, tyrosine kinase) gene encoding a cytoplasmic protein-tyrosine kinase involved in the regulation of cell behavior. We investigated the effect of the 15q26.1 variants on FES expression and whether FES plays a role in atherosclerosis. METHODS AND RESULTS: Analyses of isogenic monocytic cell lines generated by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that monocytes with an engineered 15q26.1 CAD risk genotype had reduced FES expression. Small-interfering-RNA-mediated knockdown of FES promoted migration of monocytes and vascular smooth muscle cells. A phosphoproteomics analysis showed that FES knockdown altered phosphorylation of a number of proteins known to regulate cell migration. Single-cell RNA-sequencing revealed that in human atherosclerotic plaques, cells that expressed FES were predominately monocytes/macrophages, although several other cell types including smooth muscle cells also expressed FES. There was an association between the 15q26.1 CAD risk genotype and greater numbers of monocytes/macrophage in human atherosclerotic plaques. An animal model study demonstrated that Fes knockout increased atherosclerotic plaque size and within-plaque content of monocytes/macrophages and smooth muscle cells, in apolipoprotein E-deficient mice fed a high fat diet. CONCLUSIONS: We provide substantial evidence that the CAD risk variants at the 15q26.1 locus reduce FES expression in monocytes and that FES depletion results in larger atherosclerotic plaques with more monocytes/macrophages and smooth muscle cells. This study is the first demonstration that FES plays a protective role against atherosclerosis and suggests that enhancing FES activity could be a potentially novel therapeutic approach for CAD intervention.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Proteínas Proto-Oncogênicas c-fes , Animais , Humanos , Camundongos , Artérias/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Estudo de Associação Genômica Ampla , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Proteínas Proto-Oncogênicas c-fes/genética , Proteínas Proto-Oncogênicas c-fes/metabolismo
7.
Bioinformatics ; 38(Suppl 1): i212-i219, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35758773

RESUMO

MOTIVATION: Pleiotropic SNPs are associated with multiple traits. Such SNPs can help pinpoint biological processes with an effect on multiple traits or point to a shared etiology between traits. We present PolarMorphism, a new method for the identification of pleiotropic SNPs from genome-wide association studies (GWAS) summary statistics. PolarMorphism can be readily applied to more than two traits or whole trait domains. PolarMorphism makes use of the fact that trait-specific SNP effect sizes can be seen as Cartesian coordinates and can thus be converted to polar coordinates r (distance from the origin) and theta (angle with the Cartesian x-axis, in the case of two traits). r describes the overall effect of a SNP, while theta describes the extent to which a SNP is shared. r and theta are used to determine the significance of SNP sharedness, resulting in a P-value per SNP that can be used for further analysis. RESULTS: We apply PolarMorphism to a large collection of publicly available GWAS summary statistics enabling the construction of a pleiotropy network that shows the extent to which traits share SNPs. We show how PolarMorphism can be used to gain insight into relationships between traits and trait domains and contrast it with genetic correlation. Furthermore, pathway analysis of the newly discovered pleiotropic SNPs demonstrates that analysis of more than two traits simultaneously yields more biologically relevant results than the combined results of pairwise analysis of the same traits. Finally, we show that PolarMorphism is more efficient and more powerful than previously published methods. AVAILABILITY AND IMPLEMENTATION: code: https://github.com/UMCUGenetics/PolarMorphism, results: 10.5281/zenodo.5844193. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Estudo de Associação Genômica Ampla/métodos , Fenótipo
8.
Eur J Vasc Endovasc Surg ; 65(5): 700-709, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36708756

RESUMO

INTRODUCTION: Carotid plaque intraplaque haemorrhage (IPH) is associated with future cardiovascular events. It was hypothesised that plasma proteins associated with carotid plaque IPH are also likely to be associated with major adverse cardiovascular events (MACE) after carotid endarterectomy (CEA). METHODS: In pre-operative blood samples from patients undergoing CEA within the Athero-Express biobank, proteins involved in cardiovascular disease were measured using three OLINK proteomics immunoassays. The association between proteins and IPH was analysed using logistic regression analyses. Subsequently, the association between the IPH associated plasma proteins and the three year post-operative risk of MACE (including stroke, myocardial infarction, or cardiovascular death) was analysed. RESULTS: Within the three year follow up, 130 patients (18.9%) of 688 symptomatic and asymptomatic patients undergoing CEA developed MACE. Six of 276 plasma proteins were found to be significantly associated with IPH, from which only lipoprotein lipase (LPL) was associated with the post-operative risk of MACE undergoing CEA. Within the 30 day peri-operative period, high plasma LPL was independently associated with an increased risk of MACE (adjusted hazard ratio [HR] per standard deviation [SD] 1.60, 1.10 - 2.30), p = .014). From 30 days to three years, however, high LPL was associated with a lower risk of MACE (adjusted HR per SD 0.80, 0.65 - 0.99, p= .036). CONCLUSION: High LPL concentrations were found to be associated with a higher risk of MACE in the first 30 post-operative days but with a lower risk MACE between 30 days and three years, meaning that LPL has different hazards at different time points.


Assuntos
Estenose das Carótidas , Endarterectomia das Carótidas , Infarto do Miocárdio , Placa Aterosclerótica , Acidente Vascular Cerebral , Humanos , Endarterectomia das Carótidas/efeitos adversos , Lipase Lipoproteica , Fatores de Risco , Medição de Risco , Resultado do Tratamento , Acidente Vascular Cerebral/etiologia , Hemorragia/etiologia , Infarto do Miocárdio/etiologia , Placa Aterosclerótica/cirurgia , Estenose das Carótidas/complicações , Estenose das Carótidas/cirurgia
9.
Circ Res ; 127(11): 1437-1455, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-32981416

RESUMO

RATIONALE: Atherosclerotic lesions are known for their cellular heterogeneity, yet the molecular complexity within the cells of human plaques has not been fully assessed. OBJECTIVE: Using single-cell transcriptomics and chromatin accessibility, we gained a better understanding of the pathophysiology underlying human atherosclerosis. METHODS AND RESULTS: We performed single-cell RNA and single-cell ATAC sequencing on human carotid atherosclerotic plaques to define the cells at play and determine their transcriptomic and epigenomic characteristics. We identified 14 distinct cell populations including endothelial cells, smooth muscle cells, mast cells, B cells, myeloid cells, and T cells and identified multiple cellular activation states and suggested cellular interconversions. Within the endothelial cell population, we defined subsets with angiogenic capacity plus clear signs of endothelial to mesenchymal transition. CD4+ and CD8+ T cells showed activation-based subclasses, each with a gradual decline from a cytotoxic to a more quiescent phenotype. Myeloid cells included 2 populations of proinflammatory macrophages showing IL (interleukin) 1B or TNF (tumor necrosis factor) expression as well as a foam cell-like population expressing TREM2 (triggering receptor expressed on myeloid cells 2) and displaying a fibrosis-promoting phenotype. ATACseq data identified specific transcription factors associated with the myeloid subpopulation and T cell cytokine profiles underlying mutual activation between both cell types. Finally, cardiovascular disease susceptibility genes identified using public genome-wide association studies data were particularly enriched in lesional macrophages, endothelial, and smooth muscle cells. CONCLUSIONS: This study provides a transcriptome-based cellular landscape of human atherosclerotic plaques and highlights cellular plasticity and intercellular communication at the site of disease. This detailed definition of cell communities at play in atherosclerosis will facilitate cell-based mapping of novel interventional targets with direct functional relevance for the treatment of human disease.


Assuntos
Doenças das Artérias Carótidas/genética , Células Endoteliais/metabolismo , Perfilação da Expressão Gênica , Linfócitos/metabolismo , Células Mieloides/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Análise de Célula Única , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Animais , Doenças das Artérias Carótidas/metabolismo , Doenças das Artérias Carótidas/patologia , Transdiferenciação Celular , Sequenciamento de Cromatina por Imunoprecipitação , Bases de Dados Genéticas , Células Endoteliais/patologia , Feminino , Estudo de Associação Genômica Ampla , Humanos , Linfócitos/patologia , Masculino , Camundongos , Pessoa de Meia-Idade , Células Mieloides/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , RNA-Seq
10.
Circ Res ; 127(12): 1552-1565, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33040646

RESUMO

RATIONALE: Coronary artery disease (CAD) is a major cause of morbidity and mortality worldwide. Recent genome-wide association studies revealed 163 loci associated with CAD. However, the precise molecular mechanisms by which the majority of these loci increase CAD risk are not known. Vascular smooth muscle cells (VSMCs) are critical in the development of CAD. They can play either beneficial or detrimental roles in lesion pathogenesis, depending on the nature of their phenotypic changes. OBJECTIVE: To identify genetic variants associated with atherosclerosis-relevant phenotypes in VSMCs. METHODS AND RESULTS: We quantified 12 atherosclerosis-relevant phenotypes related to calcification, proliferation, and migration in VSMCs isolated from 151 multiethnic heart transplant donors. After genotyping and imputation, we performed association mapping using 6.3 million genetic variants. We demonstrated significant variations in calcification, proliferation, and migration. These phenotypes were not correlated with each other. We performed genome-wide association studies for 12 atherosclerosis-relevant phenotypes and identified 4 genome-wide significant loci associated with at least one VSMC phenotype. We overlapped the previously identified CAD loci with our data set and found nominally significant associations at 79 loci. One of them was the chromosome 1q41 locus, which harbors MIA3. The G allele of the lead risk single nucleotide polymorphism (SNP) rs67180937 was associated with lower VSMC MIA3 expression and lower proliferation. Lentivirus-mediated silencing of MIA3 (melanoma inhibitory activity protein 3) in VSMCs resulted in lower proliferation, consistent with human genetics findings. Furthermore, we observed a significant reduction of MIA3 protein in VSMCs in thin fibrous caps of late-stage atherosclerotic plaques compared to early fibroatheroma with thick and protective fibrous caps in mice and humans. CONCLUSIONS: Our data demonstrate that genetic variants have significant influences on VSMC function relevant to the development of atherosclerosis. Furthermore, high MIA3 expression may promote atheroprotective VSMC phenotypic transitions, including increased proliferation, which is essential in the formation or maintenance of a protective fibrous cap.


Assuntos
Aterosclerose/genética , Aterosclerose/patologia , Variação Genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Placa Aterosclerótica , Animais , Translocador Nuclear Receptor Aril Hidrocarboneto/genética , Translocador Nuclear Receptor Aril Hidrocarboneto/metabolismo , Aterosclerose/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Modelos Animais de Doenças , Feminino , Fibrose , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Masculino , Camundongos Knockout para ApoE , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
11.
Circ Res ; 126(5): 571-585, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-31893970

RESUMO

RATIONALE: PCSKs (Proprotein convertase subtilisins/kexins) are a protease family with unknown functions in vasculature. Previously, we demonstrated PCSK6 upregulation in human atherosclerotic plaques associated with smooth muscle cells (SMCs), inflammation, extracellular matrix remodeling, and mitogens. OBJECTIVE: Here, we applied a systems biology approach to gain deeper insights into the PCSK6 role in normal and diseased vessel wall. METHODS AND RESULTS: Genetic analyses revealed association of intronic PCSK6 variant rs1531817 with maximum internal carotid intima-media thickness progression in high-cardiovascular risk subjects. This variant was linked with PCSK6 mRNA expression in healthy aortas and plaques but also with overall plaque SMA+ cell content and pericyte fraction. Increased PCSK6 expression was found in several independent human cohorts comparing atherosclerotic lesions versus healthy arteries, using transcriptomic and proteomic datasets. By immunohistochemistry, PCSK6 was localized to fibrous cap SMA+ cells and neovessels in plaques. In human, rat, and mouse intimal hyperplasia, PCSK6 was expressed by proliferating SMA+ cells and upregulated after 5 days in rat carotid balloon injury model, with positive correlation to PDGFB (platelet-derived growth factor subunit B) and MMP (matrix metalloprotease) 2/MMP14. Here, PCSK6 was shown to colocalize and cointeract with MMP2/MMP14 by in situ proximity ligation assay. Microarrays of carotid arteries from Pcsk6-/- versus control mice revealed suppression of contractile SMC markers, extracellular matrix remodeling enzymes, and cytokines/receptors. Pcsk6-/- mice showed reduced intimal hyperplasia response upon carotid ligation in vivo, accompanied by decreased MMP14 activation and impaired SMC outgrowth from aortic rings ex vivo. PCSK6 silencing in human SMCs in vitro leads to downregulation of contractile markers and increase in MMP2 expression. Conversely, PCSK6 overexpression increased PDGFBB (platelet-derived growth factor BB)-induced cell proliferation and particularly migration. CONCLUSIONS: PCSK6 is a novel protease that induces SMC migration in response to PDGFB, mechanistically via modulation of contractile markers and MMP14 activation. This study establishes PCSK6 as a key regulator of SMC function in vascular remodeling. Visual Overview: An online visual overview is available for this article.


Assuntos
Miócitos de Músculo Liso/metabolismo , Pró-Proteína Convertases/genética , Serina Endopeptidases/genética , Remodelação Vascular , Animais , Artérias Carótidas/metabolismo , Artérias Carótidas/patologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Masculino , Metaloproteinases da Matriz/genética , Metaloproteinases da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos de Músculo Liso/fisiologia , Polimorfismo de Nucleotídeo Único , Pró-Proteína Convertases/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Ratos , Ratos Sprague-Dawley , Serina Endopeptidases/metabolismo , Transcriptoma
13.
Circulation ; 142(6): 546-555, 2020 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-32654539

RESUMO

BACKGROUND: Studies examining the role of factor V Leiden among patients at higher risk of atherothrombotic events, such as those with established coronary heart disease (CHD), are lacking. Given that coagulation is involved in the thrombus formation stage on atherosclerotic plaque rupture, we hypothesized that factor V Leiden may be a stronger risk factor for atherothrombotic events in patients with established CHD. METHODS: We performed an individual-level meta-analysis including 25 prospective studies (18 cohorts, 3 case-cohorts, 4 randomized trials) from the GENIUS-CHD (Genetics of Subsequent Coronary Heart Disease) consortium involving patients with established CHD at baseline. Participating studies genotyped factor V Leiden status and shared risk estimates for the outcomes of interest using a centrally developed statistical code with harmonized definitions across studies. Cox proportional hazards regression models were used to obtain age- and sex-adjusted estimates. The obtained estimates were pooled using fixed-effect meta-analysis. The primary outcome was composite of myocardial infarction and CHD death. Secondary outcomes included any stroke, ischemic stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality. RESULTS: The studies included 69 681 individuals of whom 3190 (4.6%) were either heterozygous or homozygous (n=47) carriers of factor V Leiden. Median follow-up per study ranged from 1.0 to 10.6 years. A total of 20 studies with 61 147 participants and 6849 events contributed to analyses of the primary outcome. Factor V Leiden was not associated with the combined outcome of myocardial infarction and CHD death (hazard ratio, 1.03 [95% CI, 0.92-1.16]; I2=28%; P-heterogeneity=0.12). Subgroup analysis according to baseline characteristics or strata of traditional cardiovascular risk factors did not show relevant differences. Similarly, risk estimates for the secondary outcomes including stroke, coronary revascularization, cardiovascular mortality, and all-cause mortality were also close to identity. CONCLUSIONS: Factor V Leiden was not associated with increased risk of subsequent atherothrombotic events and mortality in high-risk participants with established and treated CHD. Routine assessment of factor V Leiden status is unlikely to improve atherothrombotic events risk stratification in this population.


Assuntos
Doença das Coronárias/genética , Fator V/genética , Genótipo , Trombose/genética , Aterosclerose , Ensaios Clínicos como Assunto , Doença das Coronárias/diagnóstico , Doença das Coronárias/mortalidade , Predisposição Genética para Doença , Humanos , Polimorfismo de Nucleotídeo Único , Medicina de Precisão , Prognóstico , Risco
14.
Basic Res Cardiol ; 115(6): 67, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33185739

RESUMO

A missense variant of the sushi, von Willebrand factor type A, EGF and pentraxin domain containing protein 1 (SVEP1) is genome-wide significantly associated with coronary artery disease. The mechanisms how SVEP1 impacts atherosclerosis are not known. We found endothelial cells (EC) and vascular smooth muscle cells to represent the major cellular source of SVEP1 in plaques. Plaques were larger in atherosclerosis-prone Svep1 haploinsufficient (ApoE-/-Svep1+/-) compared to Svep1 wild-type mice (ApoE-/-Svep1+/+) and ApoE-/-Svep1+/- mice displayed elevated plaque neutrophil, Ly6Chigh monocyte, and macrophage numbers. We assessed how leukocytes accumulated more inside plaques in ApoE-/-Svep1+/- mice and found enhanced leukocyte recruitment from blood into plaques. In vitro, we examined how SVEP1 deficiency promotes leukocyte recruitment and found elevated expression of the leukocyte attractant chemokine (C-X-C motif) ligand 1 (CXCL1) in EC after incubation with missense compared to wild-type SVEP1. Increasing wild-type SVEP1 levels silenced endothelial CXCL1 release. In line, plasma Cxcl1 levels were elevated in ApoE-/-Svep1+/- mice. Our studies reveal an atheroprotective role of SVEP1. Deficiency of wild-type Svep1 increased endothelial CXCL1 expression leading to enhanced recruitment of proinflammatory leukocytes from blood to plaque. Consequently, elevated vascular inflammation resulted in enhanced plaque progression in Svep1 deficiency.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Moléculas de Adesão Celular/metabolismo , Doença da Artéria Coronariana/metabolismo , Vasos Coronários/metabolismo , Proteínas/metabolismo , Animais , Antígenos Ly/metabolismo , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/genética , Células Cultivadas , Quimiocina CXCL1/genética , Quimiocina CXCL1/metabolismo , Quimiotaxia de Leucócito , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Vasos Coronários/patologia , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Estudos de Associação Genética , Predisposição Genética para Doença , Haploinsuficiência , Humanos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Infiltração de Neutrófilos , Neutrófilos/patologia , Placa Aterosclerótica , Polimorfismo de Nucleotídeo Único , Proteínas/genética
15.
Proc Natl Acad Sci U S A ; 114(14): 3613-3618, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28265093

RESUMO

Large artery atherosclerotic stroke (LAS) shows substantial heritability not explained by previous genome-wide association studies. Here, we explore the role of coding variation in LAS by analyzing variants on the HumanExome BeadChip in a total of 3,127 cases and 9,778 controls from Europe, Australia, and South Asia. We report on a nonsynonymous single-nucleotide variant in serpin family A member 1 (SERPINA1) encoding alpha-1 antitrypsin [AAT; p.V213A; P = 5.99E-9, odds ratio (OR) = 1.22] and confirm histone deacetylase 9 (HDAC9) as a major risk gene for LAS with an association in the 3'-UTR (rs2023938; P = 7.76E-7, OR = 1.28). Using quantitative microscale thermophoresis, we show that M1 (A213) exhibits an almost twofold lower dissociation constant with its primary target human neutrophil elastase (NE) in lipoprotein-containing plasma, but not in lipid-free plasma. Hydrogen/deuterium exchange combined with mass spectrometry further revealed a significant difference in the global flexibility of the two variants. The observed stronger interaction with lipoproteins in plasma and reduced global flexibility of the Val-213 variant most likely improve its local availability and reduce the extent of proteolytic inactivation by other proteases in atherosclerotic plaques. Our results indicate that the interplay between AAT, NE, and lipoprotein particles is modulated by the gate region around position 213 in AAT, far away from the unaltered reactive center loop (357-360). Collectively, our findings point to a functionally relevant balance between lipoproteins, proteases, and AAT in atherosclerosis.


Assuntos
Histona Desacetilases/genética , Placa Aterosclerótica/complicações , Polimorfismo de Nucleotídeo Único , Proteínas Repressoras/genética , Acidente Vascular Cerebral/genética , alfa 1-Antitripsina/genética , Regiões 3' não Traduzidas , Medição da Troca de Deutério , Estudos de Associação Genética , Humanos , Elastase de Leucócito/metabolismo , Espectrometria de Massas , Placa Aterosclerótica/genética , Acidente Vascular Cerebral/etiologia , alfa 1-Antitripsina/metabolismo
16.
J Mol Cell Cardiol ; 127: 260-269, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30629987

RESUMO

AIMS: Mouse studies have established distinct monocyte subtypes that participate in the process of atherosclerotic lesion formation. The pro-inflammatory Ly6Chigh monocyte subtype actively contributes to murine plaque progression and destabilization. Also in humans, different peripheral monocyte subtypes have been identified, of which the CD14+CD16- classical monocyte is suggested to display similar pro-atherosclerotic properties as the murine Ly6Chigh subtype. We aimed to investigate if circulating CD14+CD16- classical monocytes associate with characteristics of a vulnerable carotid atherosclerotic plaque and if they associate with the risk of secondary adverse manifestations of atherosclerotic disease. METHODS AND RESULTS: We enrolled 175 carotid endarterectomy patients of the Athero-Express biobank in our study. Just prior to surgical procedure, blood was collected and peripheral blood mononuclear cells were isolated. Characterization of monocyte subsets was performed by flow cytometry. Plaque characteristics were semi-quantitatively scored for the presence of fat, collagen, intraplaque hemorrhage and calcification. Vessel density, smooth muscle cells and macrophages were assessed quantitatively on a continuous scale. All features of a vulnerable plaque phenotype, including low amounts of collagen and smooth muscle cells, and increased fat content, vessel density, intraplaque hemorrhage and plaque macrophages were not significantly associated with differential levels of peripheral classical CD14+CD16- monocytes or other monocyte subsets. Using Cox regression models to evaluate the prognostic value of circulating monocyte subtypes, we found that total counts of peripheral monocytes, as well as CD14+CD16- classical and other monocyte subtypes were not associated with the risk of secondary cardiovascular events during 3 years follow-up. CONCLUSION: Circulating classical CD14+CD16- monocytes do not associate with specific vulnerable plaque characteristics. In addition, they do not predict secondary adverse manifestations. This suggests that in patients with established carotid artery disease, the circulating monocytes do not reflect plaque characteristics and have no value in identifying patients at risk for future cardiovascular events.


Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Monócitos/metabolismo , Placa Aterosclerótica/patologia , Receptores de IgG/metabolismo , Idoso , Feminino , Seguimentos , Humanos , Macrófagos/metabolismo , Masculino , Fenótipo
17.
Hum Mol Genet ; 24(23): 6849-60, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26376864

RESUMO

To date, genome-wide association studies (GWASs) have identified >100 loci with single variants associated with body mass index (BMI). This approach may miss loci with high allelic heterogeneity; therefore, the aim of the present study was to use gene-based meta-analysis to identify regions with high allelic heterogeneity to discover additional obesity susceptibility loci. We included GWAS data from 123 865 individuals of European descent from 46 cohorts in Stage 1 and Metabochip data from additional 103 046 individuals from 43 cohorts in Stage 2, all within the Genetic Investigation of ANthropometric Traits (GIANT) consortium. Each cohort was tested for association between ∼2.4 million (Stage 1) or ∼200 000 (Stage 2) imputed or genotyped single variants and BMI, and summary statistics were subsequently meta-analyzed in 17 941 genes. We used the 'VErsatile Gene-based Association Study' (VEGAS) approach to assign variants to genes and to calculate gene-based P-values based on simulations. The VEGAS method was applied to each cohort separately before a gene-based meta-analysis was performed. In Stage 1, two known (FTO and TMEM18) and six novel (PEX2, MTFR2, SSFA2, IARS2, CEP295 and TXNDC12) loci were associated with BMI (P < 2.8 × 10(-6) for 17 941 gene tests). We confirmed all loci, and six of them were gene-wide significant in Stage 2 alone. We provide biological support for the loci by pathway, expression and methylation analyses. Our results indicate that gene-based meta-analysis of GWAS provides a useful strategy to find loci of interest that were not identified in standard single-marker analyses due to high allelic heterogeneity.


Assuntos
Índice de Massa Corporal , Loci Gênicos , Predisposição Genética para Doença , Obesidade/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Polimorfismo de Nucleotídeo Único , População Branca/genética
20.
Arterioscler Thromb Vasc Biol ; 36(6): 1240-6, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27079880

RESUMO

OBJECTIVE: The genetically modified mouse is the most commonly used animal model for studying the pathogenesis of atherosclerotic disease. We aimed to assess if mice atherosclerosis-related genes could be validated in human disease through examination of results from genome-wide association studies. APPROACH AND RESULTS: We performed a systematic review to identify atherosclerosis-causing genes in mice and carried out gene-based association tests of their human orthologs for an association with human coronary artery disease and human large artery ischemic stroke. Moreover, we investigated the association of these genes with human atherosclerotic plaque characteristics. In addition, we assessed the presence of tissue-specific cis-acting expression quantitative trait loci for these genes in humans. Finally, using pathway analyses we show that the putative atherosclerosis-causing genes revealed few associations with human coronary artery disease, large artery ischemic stroke, or atherosclerotic plaque characteristics, despite the fact that the majority of these genes have cis-acting expression quantitative trait loci. CONCLUSIONS: A role for genes that has been observed in mice for atherosclerotic lesion development could scarcely be confirmed by studying associations of disease development with common human genetic variants. The value of murine atherosclerotic models for selection of therapeutic targets in human disease remains unclear.


Assuntos
Doença da Artéria Coronariana/genética , Perfilação da Expressão Gênica , Arteriosclerose Intracraniana/genética , Polimorfismo de Nucleotídeo Único , Acidente Vascular Cerebral/genética , Animais , Biologia Computacional , Doença da Artéria Coronariana/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Marcadores Genéticos , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Arteriosclerose Intracraniana/patologia , Camundongos , Fenótipo , Placa Aterosclerótica , Locos de Características Quantitativas , Reprodutibilidade dos Testes , Medição de Risco , Fatores de Risco , Especificidade da Espécie , Acidente Vascular Cerebral/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA